3D Mapping of Enhanced Oil Recovery in Sandstone Reservoirs with Diverse Datasets

| |

enhanced oil recovery in sandstone reservoirs

Among the many different factors that oil recovery depends on, the lithological structure of the reservoir is one of the primary factors. The lithological characteristics of the sandstone reservoir make it the most sought-after choice for oil recovery projects. In fact, most existing oil and gas production is seen in sandstone reservoirs.

The unique properties of sandstone make enhanced oil recovery in sandstone reservoirs more complex. Through the integration of diverse geologic, lithologic, and engineering datasets, engineers can analyze the present condition of the reservoir. The analysis can be further enhanced with the development of an integrated 3D reservoir model. The 3D visualization of enhanced oil recovery (EOR) allows full capture of reservoir characteristics and helps in making a proper design strategy for further exploitation of untouched hydrocarbon reserves.

Characteristics of Sandstone Reservoir

Most sandstone reservoirs are lithologically heterogeneous. The heterogeneity of the reservoir is defined by the geometry and size of the grain, facies distribution, sedimentary structure, diagenesis, and presence of faults and fractures. These factors influence the porosity and permeability and ultimately the quality of the reservoir. Often, there is also a presence of intrapore clay, overgrowth of quartz, and carbonate cementation which greatly affects the hydrocarbon production from the reservoir.

The petrophysical parameters of the sandstone reservoirs can be evaluated from the well log data which provides information on porosity, water and hydrocarbon saturation, and resistivity at a minimum. The log curve, cuttings, and well test data extract further information during the drilling and primary production phase. Porosity distribution along the reservoir can be examined through the evaluation of sandstone diagenesis with facies distribution and lithology. The knowledge of reservoir parameters helps in developing a simulation essential in developing strategies for the fluid injection method for the enhanced oil recovery process.

Diverse Dataset Visualization for Enhanced Oil Recovery

The integration of geological and historical production data with the petrophysical data provides a unique understanding of subsurface characteristics for enhanced oil recovery in sandstone reservoirs. The integrated information can be used for efficient targeting of unproduced hydrocarbon reserves left in a lower quality sandstone reservoir. A fluid injection program, be it CO2, water, steam, or chemical injection, must be based upon the analysis of these data so that there is no possible interaction between mineral and injected fluid. This is important because the presence of minerals like clay minerals can be a major concern for the engineers while selecting and designing the EOR project.

The integrated dataset is essential in mapping, analyzing, and predicting hydrocarbon reservoir behavior for developing an EOR strategy. To maximize the production from the sandstone reservoirs, a 3D reservoir simulation can be combined with the 4D engineering understanding of the production and injection process to derive a complex interpretive analysis. The incorporation of diverse datasets facilitates this EOR analysis to identify the project’s ultimate economic potential. This can be accomplished through a 4D visualization and integration platform such as CoViz 4D by Dynamic Graphics Inc.

CoViz 4D: Integration, Mapping, and Analysis

CoViz 4D provides a platform for integrating the multi-component datasets into a common geospatial environment for different asset teams. The integrated geological and engineering analysis data along with historical production data from multiple sources enables the construction and understanding of comprehensive subsurface models. These integrated data and models can be used for the analysis and design of an efficient strategy for enhanced oil recovery in sandstone reservoirs.

To develop an effective EOR program, fully integrated information on subsurface heterogeneities, and geological complexities is essential. With the 3D mapping of diverse datasets, associated uncertainties and future production trends can be analyzed which is essential in improving the economic understanding of the project.

CoViz 4D, a data visualization analytics software from Dynamic Graphics Inc., gives geologists, geophysicists, and reservoir engineers the ability to easily access and combine all relevant data associated with subsurface environments. Powerful analytic capabilities enable users to explore data relationships, analyze the accuracy of depth conversion of 3D seismic, and visualize seismic well ties and velocity models to facilitate decisions that positively impact profit and reduce operational risk. To learn more about CoViz 4D contact our team.

FURTHER READING

Geothermal Reservoir Characterization: Visualizing the Parameters

Development of a geothermal reservoir is shown using a 3D seismic slice along with a 3D temperature model and selected temperature logs of nearby wells. Microseismic events are also shown from the stimulation of one well. Data courtesy USDOE Geothermal Data...

Enhancing Reservoir Connectivity Analysis Through 3D Visualization

A 3D model with well locations and streamlines imported from a reservoir simulation package is co-visualized to determine which wells are seeing the most fluid and get an idea of if their completions are ideally located along the well. Data used by permission of the...

Understanding the Role of Data Integration in Wellbore Trajectory Planning

Geologic complexity and a maze of existing wellbores can challenge the best well planners to navigate subsurface environments and determine the optimum wellbore trajectories for new, sidetrack, multilateral, or infill wells. Well planners share the responsibility with...

Using 3D Terrain Visualization Software for Multicomponent Scene Analysis

3D scene building, based on open-source digital terrain models, buildings, vegetation, powerlines, fences and satellite images can be integrated for visual communication and analysis functions for a multitude of purposes. CoViz 4D is extremely adept at quickly...

Reservoir Characterization and Modeling: The Role of 4D Seismic in Visualization and Analysis

4D seismic together with reservoir simulation results are a powerful tool in optimizing production over the life of an oilfield.The hydrocarbon reservoir at the time of discovery is the product of a seismic survey and a collection of appraisal wells. Use of various...

Reservoir Performance Analysis: Obtaining the Complete Picture

Temporal visualization and analysis of all reservoir conditions and various data components with CoViz 4D facilitates the understanding of reservoir potential and maximizing recovery and profitability.Accurate reservoir performance analysis requires a detailed...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Accessibility Tools
hide

Share on Social Media