3D Permeability Modeling in Carbonate Reservoirs

| |

Structure and property models with well logs and flowback tracer towers. Note the rock heterogeneity in the top layer that’s common in carbonate reservoirs. Data courtesy of Rocky Mountain Oilfield Technology Center and USDOE.

Carbonate reservoirs are the source of some of the world’s largest oil and gas reserves. These reservoirs are mostly known for their heterogeneous formation and are more complex to characterize. This complexity is mostly due to the variable distribution of porosity and permeability in carbonate rocks. This porosity and permeability can expand in both horizontal and vertical directions across the stratigraphic boundaries and sub-facies. This distribution makes the production estimation through such reservoirs a challenge.

A 3D permeability model is thus a very crucial method in characterizing a carbonate reservoir. Engineers and geoscientists can use the model to efficiently target the high permeability reservoir and avoid low permeability reservoir for better hydrocarbon and economic yield.

Understanding Permeability in Carbonate Reservoir

Permeability defines the ability of the rock to allow the movement of fluid through it. In a carbonate reservoir, permeability distribution has a high degree of variability. This variability in porosity and permeability can be defined by grain size, lithofacies, clay content, and fractures in the subsurface rock structure. The primary production, in an individual well, is often directly proportional to the permeability found in the reservoir penetrated by the well. Thus, the permeability data obtained from one well cannot be reflective of the permeability of the entire oil field. The production process can show extreme variations among adjacent wells resulting from variations that may include a primary fine granular, low porosity characteristics, as well as a secondary karsting cavernous, high porosity characteristics. The ability to create a 3D model and visualize these variations can be highly beneficial for effective decision making.

The data for efficient carbonate reservoir characterization can be obtained through various methods including seismic surveys, geological modeling, and well logging methods. A geological conceptual model of the carbonate reservoir can be achieved with the integration of this wide range of diverse geological and petrophysical data in a single platform. This allows engineers and geoscientists to visualize porosity and permeability and get a better understanding of the variability, complexity, and productivity of the carbonate reservoir. Analysis of these data helps them make an informed decision on drilling and recovery strategy from such complex reservoirs.

Leveraging 3D Permeability Modeling

Accurate 3D modeling of the reservoir permeability can be important in the economic development of an asset as it reduces the risk of drilling into a low permeability reservoir. Geologists, petrophysicists, geophysicists, drilling engineers, and reservoir engineers can benefit from 3D permeability modeling in the following ways:

  • Minimize uncertainty regarding carbonate reservoir characteristics with the integration of diverse data
  • Study subsurface lithology along diagenetic facies to determine porosity and permeability distribution
  • Use geologic, seismic, and log data to determine well to well heterogeneity and permeability to minimize uncertainty.
  • Determine the heterogeneity of the subsurface by integrating well log data with the geological conceptual model
  • Identify and locate potential karst reservoirs
  • Determine high permeability “pay zone” for making drilling and recovery related decisions

These decisions are supported by the ability to integrate and visualize multi-dimensional datasets in a single platform with a tool like CoViz 4D. It allows the asset teams to integrate different format datasets and visualize them to derive a coherent interpretation.

CoViz 4D for Permeability Modeling in Carbonate Reservoir

CoViz 4D is an ideal platform to effectively incorporate the multi-disciplinary data and fully visualize it in a single geospatial volume. With 3D modeling, variability, as well as correlation among primary and secondary permeability networks, can be determined in carbonate reservoirs. With integration and modeling, asset teams are able to make efficient design and recovery-related decisions.

CoViz 4D, a data visualization analytics software from Dynamic Graphics Inc., gives geologists, geophysicists, and reservoir engineers the ability to easily access and combine all relevant data associated with subsurface environments. Powerful analytic capabilities enable users to explore data relationships, analyze the accuracy of depth conversion of 3D seismic, and visualize seismic well ties and velocity models to facilitate decisions that positively impact profit and reduce operational risk. To learn more about CoViz 4D contact our team.


Understanding the Role of Data Integration in Enhanced Oil Recovery

EOR operations are complex, as depicted in this photo of a steam injection operation. Communication between team members and other teams is critical to understanding and managing EOR activities. CoViz 4D provides a highly integrated environment for data sharing and...

Well Stimulation: The Importance of Data Visualization and Analysis

Visualization and analysis of well stimulation data such as fracking operations are vital to enhancing well productivity and enabling a faster return on investment.Well stimulation is a highly technical and precise solution to decreased reservoir flow and production...

Enhancing Mature Field Development for Bypassed Pay Extraction

Analyzing geologic structure, reservoir temperature and infill well placement for extracting bypassed pay with CoViz 4D.Analyzing several individual, temporally-spaced datasets is the basis for defining bypassed pay in mature field development. Bypassed pay...

Mitigating Common Risks in Oil and Gas Production

CoViz 4D provides a collaborative platform for multi-disciplined asset teams to key aspects of production in order to mitigate risk and costly downtime.While there’s no way to completely eliminate mishaps and failures that can create potential risks in oil and gas...

Reducing Extended Reach Drilling Challenges With Data Integration

Paths are easily created from surface to align to multiple targets. Pictured: high-angle wellpath.Extended-reach drilling (ERD), characterized by paths with long horizontal distances, is an approach to cost-effectively recover reserves. With a single wellbore,...

Horizontal and Directional 3D Wellbore Visualization

With the increase in drilling activities on a global scale, the complexity of managing drilling operations in oil fields is becoming increasingly complex. The knowledge on the exact geospatial location of existing horizontal and directional wellbores has thus become...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Share on Social Media