modeling geologic structure

A Proven Workflow for Modeling Complex Geologic Structures

Achieving as accurate as possible models of complex geologic structures should be the goal of every geoscientist. Yet, there are significant challenges to modeling geologic structures. Data sources can be voluminous as well as erroneous. It’s rare to have a complete surface model with well-defined boundaries and layers, to begin with. Data often needs to…

depth uncertainty analysis

A Statistical Approach to Depth Uncertainty Analysis for Model Integrity

Dealing with the fundamental uncertainty of subsurface environments and their hydrocarbon resources is one of the major industry challenges. Seismic and borehole technologies improve our ability to acquire greater volumes of geologic information. Ever-increasing processor power crunches these data more efficiently to create models to help geoscientists and reservoir engineers understand the interaction between geology…

dogleg severity drilling

Minimizing Dogleg Severity in Drilling Through Visualization

Doglegs are a fact of life in most/many well planning and drilling operations. Properly planned and drilled, doglegs are part of an optimized wellpath, avoiding problematic formations and maintaining the right drilling angle to reach the pay zone. Many factors influence whether the dogleg location and curvature are appropriate or undesirable. The more accurate and…

3D geocellular modeling

Enhancing Reservoir Characterization With 3D Geocellular Modelling

Greater accuracy in reservoir modeling supports better field development and operational decisions. With the wealth of geologic, stratigraphic, geophysical, and petrophysical data, geoscientists have never been in a better position to build models that characterize reservoirs at the macro and micro level. At the micro level, 3D geocellular modeling is vital to characterizing reservoir potential…

well placement optimization

Conducting Geologic Analysis for Well Placement Optimization

Well placement optimization is an exercise in maximizing the economic return from hydrocarbon reserves while minimizing cost and risk. It’s a complex practice and is often conducted with a considerable degree of geological uncertainty. However, continually improving technologies for gathering geological data and methods for analyzing and interpreting that data have led to greater success…

geological modeling

Enhancing Geological Modeling Efforts via Data Integration

Precise geological modeling depicting intricate relationships among lithology, rock properties, and faults in structurally complex reservoirs are essential to successful hydrocarbon production. With access to detailed models geologists, geophysicists, and reservoir and production engineers are better informed to make critical decisions affecting reservoir development and operations. For many operators, combining the various datasets to create…

multi-lateral well

How Data Visualization Aids Multi-Lateral Well Design/Planning

Advances in drilling technology continue to reduce the cost and risk of multi-lateral well construction. Multi-lateral wells improve reservoir production by maximizing drainage and sweep efficiency with only incremental increases in drilling and completion costs. Multi-lateral wells also solve the problem of reaching structurally isolated zones in spite of limited slots in offshore platforms. Working…

geomechanics workflow

Leveraging a Geomechanics Workflow to Enhance Reservoir Analysis

Geomechanical analysis is critical to understanding reservoir thickness changes that occur due to production and injection. With an accurate understanding of subsurface mechanical responses, geologists and engineers gain greater confidence in planning and operational decisions. Leveraging a geomechanics workflow for reservoir analysis can lead to a more efficient way to guide all phases of a…