Overcoming the Challenge of Complex Reservoir Characterization

| |

4D seismic together with reservoir simulation results are a powerful tool in optimizing production over the life of an oilfield.

Engineers and geoscientists know more than anyone about the challenges associated with complex reservoir characterization, especially in systems such as unconventionals, carbonates, and sands. Continuous monitoring entails the provision of new data which must be assimilated with existing information to achieve a full analytical profile of the reservoir in question. What’s needed is a visual aid that combines old and new data in a crisp visual format that’s accessible to all team members.

The ability to integrate petrophysical and geological data within a single geospatial framing would allow users to understand shifting dynamics within complex reservoir systems. With the ability to cross-plot and visualize the changes in data over time (4D), analysts can find potential obstacles that could hamper development and make a correlation between wells that wouldn’t have been available without the use of data integration.

The Role of 4D in Data Visualization

Data integration is paramount to complex reservoir characterization, but the addition of 4D capabilities allows analysts to obtain a clearer view of subsurface variations and how they change over time. Quality seismic responses are helpful, but a seismic grid combined with other vital subsurface datasets gives a more resolute dynamic profile of the reservoir, regardless of its complexity.
CoViz 4D, an integrated software solution created by Dynamic Graphics, Inc., offers the visualization and analysis of multidisciplinary data. Its 4D capabilities are especially useful if analysts are dealing with a complicated reservoir structure and flow patterns with a constant stream of varied and mass data, as the 4D addition enhances the seismic history match and improves the reservoir flow models based on understanding of pressure and fluid variations over time.
CoViz 4D fosters the following:
  • the tracking of fluid and pressure fluctuations at a subsurface level
  • better understanding to improve well placement and well positioning plans
  • the increased likelihood of discovering bypassed reserves
In terms of detailed resolution, leveraging CoViz 4D also increases the chance that users can find precarious anomalies that may lead to pressure or fluid disturbances. For example, if a team finds a gas kick that leads to a well control issue in a shale reservoir, to obtain a more comprehensive understanding of the problem, team members would need to compare 4D seismic data to the original survey taken before production began and another post-production survey to trace the root of the gas kick.
With the ability to filter, and compare, grid differences, CoViz 4D can display areas of increased pressure as a possible source. The addition of seismic grid differences, well logs, and wellpaths in a 4D visual scope can alert team members to an existing problem or indicate that a quality seismic survey is needed to view the obstacles with additional clarity.
CoViz 4D allows asset teams to visualize all relevant data in a comprehensive viewing environment instead of relying on low-resolution surveys to make decisions that may fail to identify anomalies and potential risk or potential.

The Role of 4D in Data Analysis

4D visualization is also useful when comparing predicted simulation with on-the-ground events. For instance, if a team discovers a discontinuity between a seismic response and a reservoir simulation model in an offshore oil field, the combination of reservoir simulation data with time-lapse geophysical data can pinpoint the problem and allow them to craft a proper solution to address the issue. With CoViz 4D, the team could trace the root of the discrepancy in the following ways:
  • take a series of temporal animation shots over a certain period
  • analyze subsurface data including seismic surveys, prediction models, amplitude variations of reservoir sands, and well event data to ensure a reservoir is performing as expected.
  • compare a baseline survey to an updated seismic survey
The comparisons between new and old surveys are especially paramount, as they can expose anomalies that are the root cause of disconnects between the simulation and the production data. Such comparisons could reveal deviations in the form of high-pressure disturbances or water injection issues in the upper parts of a reservoir, which are not reflected in the associated predictive reservoir models.
CoViz 4D can be used to expose unforeseen challenges, such as a pressure dip stemming from a gas breakout—all revealed by analysis of the time-lapse seismic response. With all of this evidence gathered, a team can conclude, for example, that injector perforations in upper sands underwent a blockage, causing water injection complications in lower zones and unexpectedly higher water rates in the upper zone. With the ability to integrate and analyze data in CoViz 4D, asset teams can implement the necessary adjustments and optimize oilfield production.

Complex Reservoir Characterization with CoViz 4D

The key to a thorough understanding of complex reservoir conditions is integrated 4D data, across a range of disciplines, that allows users to draw connections and find potential sources of contention. The inclusion of 4D fosters the necessary visual and analytical tools to help teams make the right decisions on the field. With merged data and high-resolution visuals, team members understand well conditions faster and pinpoint anomalies earlier.
Complex reservoir characterization using static low-resolution surveys can mask aberrations and hide detailed aspects of subsurface dynamics and well conditions.
Complex reservoir characterization using static low-resolution surveys can mask aberrations and hide detailed aspects of subsurface dynamics and well conditions. However, CoViz 4D has the necessary capabilities to merge multi-disciplinary data into a central system, where geoscientists and engineers can better understand the data. With a cohesive team dynamic, diverse disciplines can more confidently understand and contribute detailed analysis to ensure the quick identification of any issues and, therefore, achieve optimum production.

CoViz 4D, a data visualization analytics software from Dynamic Graphics, Inc., contains clear 4D visuals that highlight reservoir conditions with enhanced resolution, allowing analysts to gain a better understanding of complex reservoirs. Geoscientists and engineers alike can obtain a real-time evaluation of lithogic and engineering aspects of the reservoir, with no need for additional training or varied formats. Contact our team today to learn more about CoViz 4D and how it can improve your understanding of complicated reservoir systems.

FURTHER READING

Well-Collision Avoidance: Mitigating Risk in Mature Field Development

A major concern in planning a new well is to stay in-zone as long as possible while minimizing collision risks. WellArchitect and CoViz 4D provide the integrated tools and context to help accomplish these goals. In the image above, a geologic model is “sliced” along a...

Geothermal Visualization: Comprehensive Examination of Geothermal Data

Various data types over a geothermal area. Data includes temperature logs, 3D seismic, 3D gravity cube, surface geology contacts, aerial imagery, and surface gravitometers. Data courtesy USDOE Geothermal Data Repository.The harnessing of geothermal energy from the...

Well Spacing Optimization for Oil Well Design Completion

Optimal spacing of horizontal wells in producing zones is key in maximizing production. Data used by permission of owner.Well spacing is one of the most critical factors affecting onshore well production. Reservoir teams striving to optimize well spacing can utilize...

How Data Visualization Aids Multi-Lateral Well Design/Planning

Advances in drilling technology continue to reduce the cost and risk of multi-lateral well construction. Multi-lateral wells improve reservoir production by maximizing drainage and sweep efficiency with only incremental increases in drilling and completion costs....

How Real-Time Drilling Data Analysis and Visualization Reduce Targeting Risks

Maximizing the recovery of hydrocarbon assets begins with a detailed understanding of geologic and petrophysical characteristics of the reservoir provided by well logs, interpreted seismic data, and reservoir models. With that information in hand, reservoir and...

Assessing Proven Recoverable Reserves for Oil and Gas Reservoirs

Accurate reservoir characterization benefits every aspect of development and production activities. However, one of the greatest challenges of reservoir characterization concerns the diversity of data used by the individual disciplines of the reservoir team. Each...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Share on Social Media