A Statistical Approach to Depth Uncertainty Analysis for Model Integrity

Depth uncertainty imported into well paths and displayed as cones of uncertainty indicating positional uncertainty to one Standard Deviation.

3D Depth Uncertainty Model: Depth uncertainty imported into well paths and displayed as cones of uncertainty indicating positional uncertainty to 1 Standard Deviation.

Dealing with the fundamental uncertainty of subsurface environments and their hydrocarbon resources is one of the major industry challenges. Seismic and borehole technologies improve our ability to acquire greater volumes of geologic information. Ever-increasing processor power crunches these data more efficiently to create models to help geoscientists and reservoir engineers understand the interaction between geology and hydrocarbon resources. However, regardless of the volume of data acquired, depth uncertainty analysis regarding horizons, faults, strata, and other subsurface formations continues to be a challenge.

Knowing accurate depths is critically important. It affects anything and everything regarding well planning, drilling, and production. If an oil-bearing layer was estimated to be 7,000 feet deep in very soft rock and it turned out to be 1,000 feet deeper with various hard layers to drill the result of the inaccurate estimation could be huge cost overruns due to extra rig time, drill pipe, and expensive drill bits.
Depth uncertainty analysis is critical to minimizing the risk of costly planning and drilling mistakes throughout every phase of reservoir development.

A Better Approach to Depth Uncertainty Analysis

opens in a new windowCoViz 4D makes it possible for geoscientists and reservoir engineers to integrate, analyze, and visualize a wide variety of subsurface datasets, regardless of the original source, to better understand how development decisions affect reservoir performance.
One of its many capabilities is the standard velocity modeling module that calibrates existing velocity models to minimize the depth residual (error) at the wells. This results in a more accurate velocity model that can be used to transform seismic data into the depth domain. A byproduct of the process is a depth uncertainty model. Depth predictions from this model can minimize the risks of drilling wells in previously undrilled regions. Customizable workflows enable an efficient modeling process and allow for rapid updates as additional well data are acquired during the course of field development.

More Accurate Depth-Interpreted Horizons

CoViz 4D inputs a series of 2D time horizons to build a 3D structural model in time populated with interval velocities. These velocities are averaged to depth convert the time horizons. The CoViz 4D velocity modeling module overcomes the problem of tying the interpreted horizon to the well pick. The typical method of layer-by-layer produces a corrected horizon but fails to correct the problem of inaccurate average velocity volume (time interpreted horizons) or the PSDM seismic volume (depth interpretations). CoViz 4D’s velocity modeling module delivers opens in a new windowa more accurate velocity model, allowing seismic volumes to be converted from time to depth and providing more accurate depth-interpreted horizons.

Corrected Velocity Model—Layer by Layer

CoViz 4D achieves a better level of depth uncertainty analysis by first calculating a scalar value from well pick residuals. It then applies this scalar value to the interval velocity layer by layer to produce a corrected velocity model. The interval and average velocities are continually refined as the process iterates from the top to the bottom of the structural stack. The result is an average velocity volume that can convert time surfaces to depth with reduced residuals at the wells.
Corrected Velocity Model Incorporating Additional Data from New Wells.

Corrected Velocity Model Incorporating Additional Data from New Wells.

CoViz 4D provides several velocity model output options:

  • The Compute Well Drop-out Residuals option systematically removes a well and generates a velocity model excluding specific well(s) from the analysis.
  • The Show Detailed Computing Log provides detailed information regarding the velocity building process.
  • Depth Uncertainty uses the residual results of the velocity model to produce a 3D model.

Compute and Visualize a 3D Depth Uncertainty Model

CoViz 4D takes the residual results calculated by the velocity model and computes a depth uncertainty model. In the process information regarding residuals and timing/velocity errors are displayed allowing the user to make adjustments as needed. The resulting output is a 3D model of depth uncertainty that can be visualized to explore various depth uncertainty scenarios.
As additional wells are drilled, opens in a new windowdata from these wells can be incorporated to improve the depth uncertainty analysis. Rock layer depth markers obtained from well logs help correlate and correct the depth uncertainty derived from uncalibrated velocity models. Velocity and depth conversion accuracy continue to improve as more wells are drilled and models are recalculated. Customizable workflows make it easy to automatically run (and re-run) these calculations, changing parameters to evaluate various scenarios, and continually refine the models.

Customizable workflows make it easy to automatically run (and re-run) these calculations, changing parameters to evaluate various scenarios, and continually refine the models.

Better Analysis and Understanding of Depth Uncertainty

Seismic imaging is the foundation for understanding subsurface formations and planning field development, yet it rarely provides the depth accuracy that geoscientists and reservoir engineers need for cost-effective field development. CoViz 4D offers a velocity modeling approach that offers considerable flexibility in how geoscientists define horizons, specify grid resolution, select well picks, and determine scaling factors. Using the resultant velocity model CoViz 4D then generates a 3D depth model that gives reservoir teams the ability to more accurately understand subsurface environments, and continually improve understanding as additional well data are incorporated into the model.

CoViz 4D, a data visualization analytics software from Dynamic Graphics, Inc., gives geoscientists and reservoir engineers the ability to easily access and combine all relevant data associated with subsurface environments. Powerful analytic capabilities enable users to explore data relationships, analyze depth uncertainty, and visualize geologic formations in context to facilitate decisions that positively impact profit and reduce operational risk. To learn more about CoViz 4D contact our team.

FURTHER READING

An Integrated Approach to Mature Field Production Optimization

Among the many challenges of managing a mature oil field is the need to obtain an accurate understanding of its remaining recovery potential. Greater accuracy in assessing characteristics that influence recovery—geologic variability changes in fluid saturation, water...

How Data Visualization Aids Multi-Lateral Well Design/Planning

Advances in drilling technology continue to reduce the cost and risk of multi-lateral well construction. Multi-lateral wells improve reservoir production by maximizing drainage and sweep efficiency with only incremental increases in drilling and completion costs....

Identifying High Water Cut Through Comprehensive Visualization

Easily compare oil-gas-water ratios among several wells. Data used with permission of owner.The water/oil ratio (WOR) is one of the more important metrics in calculating the economic value of a producing well. Reservoir engineers calculate water cut to update reserve...

Exploring the Advantages of Logging While Drilling

Visualizing LWD data such as max torque, weight on bit, gamma ray and rate of penetration, along with a cross section of the planned wellpath through the geologic model with a seismic backdrop in a geolocated context can significantly improve success in drilling.In...

3D Permeability Modeling in Carbonate Reservoirs

Structure and property models with well logs and flowback tracer towers. Note the rock heterogeneity in the top layer that’s common in carbonate reservoirs. Data courtesy of Rocky Mountain Oilfield Technology Center and USDOE.Carbonate reservoirs are the source of...

Improving Well and Reservoir Management Efforts with Data Visualization

3D visualization provides a comprehensive view of well locations in a geologic context.Effective well and reservoir management depends upon timely access and analysis of relevant data associated with hydrocarbon assets. Volumes of diverse data are acquired throughout...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Quick, Accurate Relief Well Planning Using 3D Visualization Software

The crucial initial phase in the drilling of a relief well is the development of an extensive relief well plan. The planning requires geoscientists, drilling engineers, and well planners to have detailed information on the subsurface geology and its attributes as well...

Accessibility Tools
hide
XHot Key: CTRL-Q

Share on Social Media