Geothermal Reservoir Characterization: Visualizing the Parameters

Development of a geothermal reservoir is shown using a 3D seismic slice along with a 3D temperature model and selected temperature logs of nearby wells.

Development of a geothermal reservoir is shown using a 3D seismic slice along with a 3D temperature model and selected temperature logs of nearby wells. Microseismic events are also shown from the stimulation of one well. Data courtesy USDOE Geothermal Data Repository.

Geothermal energy is a sustainable and renewable thermal energy source extracted from the depth of the Earth. This relatively low-cost energy source can have a huge capital risk attached to its exploration and development. This is where geothermal reservoir characterization comes into play. The various subsurface parameters directly or indirectly dictate the economic potential of an exploration project. Understanding the unique analysis of each of these subsurface variables is critical to the efficient economic development of a potential asset.

3D visualization is an effective tool for the integration and modeling of subsurface data to derive a meaningful reservoir analysis. Geoscientists and engineers can use a 3D model as a tool to analyze reservoir behaviors and make informed economic decisions.

Parameters for Geothermal Reservoir Characterization

Geothermal development projects rely heavily on very disparate types of reservoir data that elaborates on subsurface geological environments. This data influences the understanding of the economic potential of the project.

Geothermal reservoirs are unique in the wide range of rock types in which they are found. The geothermal exploration process captures this varying data through standard subsurface and petrologic analysis, surface geology and geophysical surveys (gravity, magnetic and seismic), and heat flow data to obtain a similarly varied analysis. The analysis expands upon the parameters such as rock permeability, porosity, resistivity, conductivity, seismicity, fluid volume, and heat flow within the reservoir. The details assist the geothermal project to:

  • Locate the geothermal reservoir and faults and fractures.
  • Determine the optimal drilling location and wellbore design.
  • Specify a drilling plan for geothermal well with detailed analysis on the rate of penetration (ROP), borehole diameter and depth, fluid transmission, casing requirement, and selection of rig.
  • Identify hazards in drilling and barriers for further project development.

Efficient visualization of reservoir characteristics provides an accurate analysis of the geothermal subsurface on which operators can make informed decisions regarding project development while also minimizing their investment risk.

Visualizing the Economic Potential of a Project

Integration and visualization of the varied geothermal data allow engineers and geoscientists to guide the project in an economic direction. A comprehensive 3D model of geothermal data facilitates an effective correlation between diverse geospatial data. This enhances collaboration between the different disciplines in determining the optimal geothermal pay zone and potential performance of the reservoir.

Each step within a project has an associated cost—including costs incurred during exploration, drilling production and injection wells, well maintenance, redrilling, and operating expenses such as replacement well drilling. Efficient visualization of reservoir characteristics enhances the prospect identification and asset development opportunities that facilitate cost and time savings for a project.

CoViz 4D and EarthVision: Identification, Integration, Analysis

CoViz 4D and Earth Vision—software products from Dynamic Graphics, Inc.—are well suited to the analysis of highly diverse data types in a robust visualization 3D environment. EarthVision facilitates the development of petrophysical and structural geological models of the area to determine the best location to start developing. With CoViz 4D, different models can be integrated to form an enhanced comprehensive model of the reservoir. The software also utilizes temporal data for time-phased analysis of reservoir characteristics. With easy-to-analyze three-dimensional visualization, stakeholders can save time and capital spent in exploration and asset development.

CoViz 4D and EarthVision from Dynamic Graphics, Inc., give geoscientists and geothermal engineers the ability to easily model, access, and combine all relevant geothermal reservoir characterization parameters associated with its assets. Powerful visualization capabilities enable exploration and analysis of data changes over time, allowing your team to confidently make decisions on the field that positively impact profit and reduce operational risk. To learn more about our software contact our team.


Enhanced Reservoir Characterization Through Complete Visualization of Data

Integrating time-lapse seismic, reservoir simulation, well completion and production data in the same geo-located space can greatly enhance the understanding of reservoir conditions and performance. Data used by permission of the owner.Reservoir characterization can...

Site Selection for Geothermal Power Plants: Comprehensive Visualization of Geographical Data

With the increase in sustainable energy demand across the globe, there has also been an increase in interest in geothermal energy sources. Industries are increasingly seeking an interest in the exploration of potential geothermal sites for geothermal reserves....

Enhancing Borehole Data Analysis Through Multi-Dataset Visualization

Data acquired during drilling, in conjunction with reservoir models and seismic interpretations, can greatly improve the understanding of evolving reservoir characteristics and conditions when integrated with CoViz 4D.Borehole data obtained during a drilling process...

Enhancing Structural Interpretation of Seismic Data With Velocity Modeling

This display from CoViz 4D shows the depth scaled velocity model using well control and the sliced structural depth model in the upper part of the image. The seismic time model along with the average velocity cube used to correct well control is shown below.While...

Efficient Sorting of Oil and Gas Big Data

The oil and gas industry has used big data as a way to fill the information gap in all phases of asset development within an oil field. Associated historical data mostly comes from an individual well in a single geospatial location. From exploration to completion and...

The Ease of Static and Dynamic Reservoir Data Integration in Reservoir Modeling

The ever changing nature of the conditions in an oil and gas reservoir can only be understood when all the relevant data is collectively viewed in a common medium. Only then can the interactions between various discrete data types be studied and the reservoir as a...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Accessibility Tools
XHot Key: CTRL-Q

Share on Social Media