The Importance of Integrated Reservoir Characterization in Geologic Modelling

Water saturation co-visualized with 4D seismic for integrated reservoir characterization.

Water saturation in the reservoir simulation model is co-visualized with 4D seismic for integrated reservoir characterization.

Hydrocarbon bearing reservoirs are complex entities. Geoscientists understand that successful recovery requires detailed knowledge of an environment that is often hidden and remote. Obtaining the most accurate understanding of these resources requires the integration of data from many different sources in many different forms to create a reservoir model that accurately characterizes the physical rock properties of a producing zone within an oil or gas field.
When done properly, accurate characterization of reservoir rock throughout the full extent of the field can yield insight to support a more definitive economic evaluation and optimized production strategies. However, without the proper tools, integrated reservoir characterization can be a difficult undertaking. In order to properly characterize a reservoir, all disciplines must combine their datasets to be visualized in one environment for complete analysis.

Essential Models, Yet Incomplete Views of Reservoir Characteristics

Within each discipline of an asset team, specific software is used to create each model based on the acquired data. When creating the initial geomodel, geoscientists rely on geophysical characteristics and geochemical and flow properties obtained from rotary and sidewall cores. They typically use software such as Petrel or GoCad to characterize reservoir and field properties. Engineers may use software like SeisWorks, GeoFrame, or SeisEarth when creating the seismic model based on seismic volumes, surface deformation, geomechanical, gravity, tracer, and pore pressure. From here, a reservoir simulation model can be created using software products like Eclipse, Nexus, or GEM to characterize the reservoir’s production potential and ultimately the asset’s economic viability. Each of these models involves the use of multiple data sources. And while each dataset is essential, when not combined with other datasets, it only provides a partial view of the reservoir.
The greatest challenge in developing a comprehensive geologic model that accurately characterizes a reservoir is the integration of all the relevant datasets produced by the software tools used within each discipline. Geoscientists working in isolation, using only discipline-specific software applications and data, cannot access datasets from other disciplines that directly or indirectly influence their own data. The incompatibility of software and the datasets geoscientists use can produce inefficiencies in the field interpretation process that result in sub-optimized utilization of reservoir assets.

Combining Numerous Datasets to Create Integrated Reservoir Characterization

To obtain maximum value and the big picture, the datasets need to be integrated into an environment that enables all disciplines in the asset team to concurrently view and explore the relationships among the data. The simple act of visualizing these data together in the same environment facilitates a geospatial awareness not available by viewing the data individually and expedites the field analysis process. The best visualization environments provide powerful 3D capabilities, as well as a 4D capability that allows asset teams to visualize and explore reservoir characteristics that change over time.

To obtain maximum value and the big picture, the datasets need to be integrated into an environment that enables all disciplines in the asset team to concurrently view and explore the relationships among the data.

For example, comparing 4D seismic response with the reservoir simulator may show that a water flood in a particular reservoir is maintaining sufficient pressure but the 4D seismic indicates a loss of pressure and therefore a lack of injector support. Here, comparing two different types of data from different sources allows a correction of the simulation model to create a more accurate representation of the subsurface environment. Overall, when all relevant data are used to create an integrated reservoir characterization model, geoscientists gain a better ability to avoid hazards such as steam escaping or uneconomical operations such as drilling a dry well.

CoViz 4D Facilitates Integrated Reservoir Characterization

CoViz 4D addresses the challenge of integrating the diversity of data associated with geologic models, reservoir simulations, and production metrics. This integrated software solution provides a common visualization environment, incorporating all relevant data to give geoscientists a better understanding of the complex relationships at play in a reservoir and apply this insight to optimize recovery.

CoViz 4D, a data visualization analytics software from Dynamic Graphics, Inc., gives geologists, geophysicists, and reservoir engineers the ability to easily access and combine all relevant data associated with subsurface environments. Powerful analytic capabilities enable users to explore data relationships, analyze the accuracy of depth conversion of 3D seismic, and visualize seismic well ties and velocity models to facilitate decisions that positively impact profit and reduce operational risk. To learn more about CoViz 4D, contact our team.


Precise Visualization of Well Placement in Shale

Well placed precisely within a target zone while avoiding offset wells in yellow. Cross sections through two different attributes in a geologic model are shown along with the 3D seismic in the background. Data courtesy of Rocky Mountain Oilfield Technology Center and...

How Data Visualization Aids Multi-Lateral Well Design/Planning

Advances in drilling technology continue to reduce the cost and risk of multi-lateral well construction. Multi-lateral wells improve reservoir production by maximizing drainage and sweep efficiency with only incremental increases in drilling and completion costs....

Accommodating Non-Spatial Data Analysis in Decision-Making Workflows

Non-spatial data analysis is just as important as analyzing spatial data during hydrocarbon asset development planning. The combination of non-spatial data and varying streams of spatial data leads to better, faster, and more confident decisions.That’s why data...

Conducting Oil and Gas Production Data Analysis in Unconventional Reservoirs

Temporal SRV analysis in CoViz 4D is an effective way to analyze and understand critical well and formation parameters in unconventional reservoirs.When conducting oil and gas data production analysis, engineers typically examine differing production volumes from...

An Integrated Approach to Seismic Forward Modeling

Schematic illustrating how the CoViz Sim2Seis workflow, tightly coupled with qualitative and quantitative analysis in the CoViz 4D Viewer, offers seismic history-matching capabilities.Seismic forward modeling is an important step to better understand complex...

How to Obtain Subsurface Data Management With Integrated Software

Accuracy and timeliness of decision-making are greatly enhanced with integrated, co-visualization software such as CoViz 4D.During hydrocarbon exploration and development operations, vast amounts of subsurface data are collected and generated. The amount of disparate...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Accessibility Tools
XHot Key: CTRL-Q

Share on Social Media