Integrated Reservoir Management: The Role of Data Visualization & Analysis

| |

3D/4D spatiotemporal integration of geologic structure, fracture stage events, microseismic events, wellbore trajectories, and well logs.

Monitor the development of a fracture network over time by using microseismic data integrated with geological or petrophysical data.

Integrating various sources and formats of reservoir data seamlessly is often a big hurdle in efficient and effective reservoir management. Each discipline involved in reservoir management has their own software tools and data sources. Those differences make it difficult to easily share this information across disciplines. However, software solutions developed specifically for the petroleum industry have removed those hurdles, giving reservoir management teams the ability to easily integrate the variety of data sources into a single environment that provides powerful 3D and 4D visualization capabilities and facilitates collaborative analysis.

These data visualization and analytic capabilities play a critical role in supporting integrated reservoir management. They provide reservoir teams with a detailed understanding of the reservoir as it evolves, allowing them to apply this insight to guide planning and development strategies.

Detailed Understanding of Subsurface Environments

Reservoir management teams gain a more detailed understanding of subsurface environments when geologic, geophysical, cellular property models, drilling logs, reservoir simulations, and other discipline-specific reservoir data are combined to create a detailed, 3D visualization of a reservoir. A common, shared understanding of a reservoir allows team members to evaluate their data in the context of the information provided by other disciplines. With shared insight, reservoir management teams can visually explore and analyze:
  • complex geologic structures that influence reservoir development;
  • consistency between seismic-derived faults and horizons and well observations;
  • stratigraphic models, logs, and core data that characterize geologic and petrophysical properties;
  • reservoir lithologies (sands, carbonate, shale) and their influence on development;
  • cellular grids that provide a framework for calculating and predicting fluid flow within a reservoir; and
  • location and dimensions of geologic target, as well as intermediate targets.
The integration of these various data sources into a single environment allows reservoir teams to visually explore a reservoir in 3D and facilitate a more accurate understanding of the complexity and interplay of factors that influence reservoir management decisions. As additional data are acquired throughout the life of the reservoir, 3D reservoir models are periodically updated to reflect current reservoir characteristics.

Ideal Locations and Trajectories for Wells

A detailed 3D visualization of geological and petrophysical characteristics gives well planners greater confidence in determining ideal well locations and trajectories. Given targets by the geologists and geophysicists, planners can visually explore the various well designs and trajectory options with the goals of minimizing drilling risks and costs while maximizing recovery.
With these capabilities, planners can:
  • Identify geological features that present potential wellbore integrity risks.
  • Analyze lithology, faults, horizons, and petrophysical properties using the 3D model.
  • Specify a series of design points and automatically interpolate between points using standard drilling curve templates.
  • Sample a cellular grid for detailed property attributes and averages intersected by a proposed wellpath.
  • Assess different well design and trajectory options, based on proximity to nearby wells, kick-off points, and dogleg severity.
  • Analyze collision-risk for a wide range of well designs, including dual opposing laterals, stacked multibranch well, re-entry laterals, clusters, and multilaterals.
  • Estimate drilling costs based on varying geophysical parameters along a planned wellbore.
An integrated reservoir view also gives well planners insight into how previously drilled wells are performing. By reviewing the geology and petrophysical attributes, well designs, and completion strategies of similar wells, planners can apply the techniques that led to enhanced well performance and avoid those that underperformed.

Monitor Production Trends and Their Impact on the Reservoir

The key to integrated reservoir management is the ability to utilize field data acquired during the production cycle. As data are acquired and integrated into the reservoir model, engineering teams improve their ability to validate assumptions, identify, and diagnose changes—sudden or gradual—that impact reservoir performance, and make adjustments throughout the production cycle to optimize recovery.
With the ability to visualize production data over time—days, weeks, months, or years—and analyze it in the context of a detailed representation of the subsurface environment, production engineers can more accurately:
  • Monitor oil-gas-water production rates for individual wells, production patterns, and even entire fields and better correlate production trends.
  • Determine if sand accumulation is likely to impact production, based on historical analysis of nearby wells. If so, what mitigation methods were most effective?
  • Quickly identify mechanical causes of declining production, such as failing pumps, broken sucker rods, or casing leaks.
  • Evaluate microseismic data to determine the extent of a distributed fracture network and identify possible thief zones.
  • Assess injection well effectiveness as part of a secondary recovery strategy.
Production data generated throughout the course of a reservoir’s life can be used to update simulation models. When combined with seismic data, well events, and microseismic, production data helps to more accurately characterize reservoir changes and provide a more accurate estimate of ultimate recovery, particularly when there are unanticipated changes in production volumes.

Time-Step Analysis (4D) in Integrated Reservoir Management

Management teams maximize the value of reservoir data when it is visualized and analyzed to show how development decisions impact production and how reservoir conditions change over time. Time-step analysis (4D) can show reservoir changes that take place over any time period as indicated by the table below.
Time-step
Use-case
Seconds to minutes
distributed acoustic (DAS) or temperature (DTS) data measured down hole
Minutes to hours
microseismic data depicting the development of fractures during a frac stage
Weeks to months
oil-water cut in response to recently-implemented water injection
Years
geomechanical analysis of reservoir subsidence in a shallow well
When individual data sources that characterize changing reservoir conditions can be integrated and animated over time, reservoir management teams gain an added dimension in understanding how development and production decisions impact recovery efforts.
Temporal analysis of data acquired over the life of a reservoir is a powerful technique to facilitate integrated reservoir management. When individual data sources that characterize changing reservoir conditions can be integrated and animated over time, reservoir management teams gain an added dimension in understanding how development and production decisions impact recovery efforts.

CoViz 4D: An Essential Tool for Integrated Reservoir Management

Petroleum producers worldwide have adopted CoViz 4D as an essential tool for integrated reservoir management. CoViz 4D is the leading data integration, visualization, and analytic software package. It provides a common environment for geologists, geophysicists, petrophysicists, and reservoir engineers to visually evaluate changing reservoir conditions and continually update models as additional data are acquired. Reservoir teams achieve better reservoir management outcomes with access to relevant information, including time-step data, and the ability to collaboratively visualize and analyze it.

CoViz 4D, a data visualization analytics software from Dynamic Graphics, Inc., gives geologists, geophysicists, and reservoir engineers the ability to easily access and combine all relevant data associated with subsurface environments. Powerful analytic capabilities enable users to explore data relationships, analyze the accuracy of depth conversion of 3D seismic, and visualize seismic well ties and velocity models to facilitate decisions that positively impact profit and reduce operational risk. To learn more about CoViz 4D contact our team.

FURTHER READING

Accommodating Non-Spatial Data Analysis in Decision-Making Workflows

Non-spatial data analysis is just as important as analyzing spatial data during hydrocarbon asset development planning. The combination of non-spatial data and varying streams of spatial data leads to better, faster, and more confident decisions.That’s why data...

Seismic Exploration: Understanding the Importance of Data Integration

Integrating seismic data with reservoir simulation results fosters a collaborative environment allowing asset teams to make better, more informed decisions in a shorter amount of time.Efficient seismic exploration requires comprehensive data integration. When...

Site Selection for Geothermal Power Plants: Comprehensive Visualization of Geographical Data

With the increase in sustainable energy demand across the globe, there has also been an increase in interest in geothermal energy sources. Industries are increasingly seeking an interest in the exploration of potential geothermal sites for geothermal reserves....

3D Visualization of Hyperspectral Data

Point Loma, California—LiDAR merged with aerial photo. LiDAR data generated for the Scripps Institution of Oceanography by the Center for Space Research, the University of Texas at Austin (CSR), with support provided by the Bureau of Economic Geology, the University...

Depth Conversion of 3D Seismic Data Through Visualization

Time-domain on top with a velocity cube, seismic cube, and interpreted horizons. Depth domain below with the depth-converted seismic cube, wells, well tops, and reservoir simulation grid derived from the depth-converted horizons. Data used by permission of the...

The Benefits of Leveraging a Reservoir Monitoring System

Combine geologic data with well information to gain a better understanding of reservoir conditions. Data used with permission of owner.An accurate understanding of reservoir conditions and activities benefits every member of the reservoir management team throughout...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Accessibility Tools
hide

Share on Social Media