Advanced Technology for Microseismic Data Interpretation

| |

microseismic data interpretation

When it comes to hydraulic fracturing in unconventional reservoirs, microseismic data are most useful when integrated with other subsurface datasets in the form of geological or petrophysical data.

Thousands of shale wells throughout the United States have performed below expectations, raising questions about the strength and profitability of fracking, notes The Wall Street Journal. One of the main reasons for this concern is the inability to determine how far a fracking event has spread underground.

In order to visualize these microseismic events, asset teams need technology that not only offers microseismic data interpretation in relation to the wellbore but also to all other geologic data relevant to successful well completion.

Integrating Microseismic Data

Microseismic data is typically collected and processed by industry service companies specializing in microseismic surveys. The quality of such surveys depends mainly on the quality of the microseismic data. Yet, in order to determine the quality of the data, petroleum professionals need the ability to visualize the data in one cohesive environment. Unfortunately, when microseismic survey information is developed with a different software product than the reservoir model, each requires its own means of visualization for analysis. Each set of data is equally relevant together but separately they only provide a portion of the “big picture” required for optimum well planning and production optimization.
When analysts are tasked with handling the contrasting formats that vendors offer, the analytical process may become complicated, fostering the risk of losing valuable data altogether. Also, the different datasets make it difficult for analysts to combine the data, raising the possibility for errors to be introduced. The answer to better microseismic data interpretation is data integration—incorporating different datasets in one viewing environment to also show the microseismic data relative to the wellbore.
With data integration, users can merge together such data streams as petrophysical, geological, and geophysical data. Advancements in technology have allowed this process to be performed by a single software application—CoViz 4D. The enhanced technologies behind data visualization software also help operators analyze production type curves for unconventional assets using cross-correlated data.

Microseismic Data Integration and Unconventional Plays

When considering hydraulic fracturing in unconventional reservoirs, many are often concerned with the potential risks. This is where data integration is useful. The best way to fully understand the status of a reservoir is through the combination of geological and engineering data. When dealing with geologic data, CoViz 4D—an integrated software solution—can extract such information as structural models or lithology and combine them with engineering data that may include fracking stages and fluid flows. The merging of multidisciplinary data allows operators to improve production goals while spotting any fluctuations and compactions that may hamper operations.
If assessing a shale reserve, for example, users can capture a microseismic event in 3D while simultaneously viewing it in animated form. CoViz 4D can display subsurface attributes, such as:
  • FMI logs
  • fault geometries
  • seismic reflection data
  • acoustic logs
All of the fracking data can be viewed on-screen with other subsurface data streams, with the system providing statistical plots that allow analysts to pinpoint certain data points easily. Additionally, the CoViz 4D provides a constant stream of updates to visual models, ensuring that managers make the right decision based on the most current visual aids. CoViz 4D can also extract production curve data and relay it to undeveloped portions of a reservoir—helping users better understand the reservoir conditions of unconventional plays and assisting them in reaching vital reserves that will help companies maximize profit and reduce risk.

Microseismic Data Interpretation and Multidisciplinary Analysis

Microseismic data is best analyzed with subsurface datasets that paint an accurate depiction of fracking conditions and unconventional reserves that are tougher to extract. By combining engineering and geological data, users can streamline operations from existing wells while planning the next stages for untapped reserves. CoViz 4D shows the microseismic data and its connection to the wellbore in a very straight forward manner.
CoViz 4D simplifies the analytical process and helps team members comprehend the nature of fracking conditions, including production profiles and unconventional plays. It also helps users make sense of large data volumes from mature fields, including ones that may hold bypassed reserves. CoViz 4D guides users during fracking, allowing managers to make the best decisions that maximize hydrocarbon extraction endeavors.

CoViz 4D, a data visualization software from Dynamic Graphics, Inc., provides data-merging tools that shorten the data-gathering process and provide detailed renderings of fracking profiles and subsurface conditions. CoViz 4D will integrate microseismic data with other pertinent data types, helping operators better understand fracking productivity. Contact our team today to learn how CoViz 4D can augment current production operations while fully assessing risk profiles for tight formations.

FURTHER READING

Geothermal Visualization: Comprehensive Examination of Geothermal Data

Various data types over a geothermal area. Data includes temperature logs, 3D seismic, 3D gravity cube, surface geology contacts, aerial imagery, and surface gravitometers. Data courtesy USDOE Geothermal Data Repository.The harnessing of geothermal energy from the...

Visual Evaluation of Infill Well Spacing

Potential Infill well plans showing different sidetrack opportunities while targeting bypassed oil in an onshore oil field. Data courtesy of RMOTC and US DOE.The economic and engineering risk associated with the development of hydrocarbon assets is immense. In...

Integrating Geomechanical and Traditional Subsurface Data Through Comprehensive Visualization of Unconventional Reservoirs

3D model with a digitized paper contour map (with horizontal well lines) draped on the reservoir surface with colored contours blended. Good correlation exists between the two sets of contours. Vertical wells are shown in yellow and directional wells are in green. A...

Minimizing Dogleg Severity in Drilling Through Visualization

Ellipsoids of uncertainty colored by dogleg severity depicted along the reference wellpath.Doglegs are a fact of life in most/many well planning and drilling operations. Properly planned and drilled, doglegs are part of an optimized wellpath, avoiding problematic...

Quick, Accurate Relief Well Planning Using 3D Visualization Software

The crucial initial phase in the drilling of a relief well is the development of an extensive relief well plan. The planning requires geoscientists, drilling engineers, and well planners to have detailed information on the subsurface geology and its attributes as well...

A Proven Workflow for Modeling Complex Geologic Structures

EarthVision provides a proven application to address the significant challenges presented in modeling complex subsurface geologic structures.Achieving as accurate as possible models of complex geologic structures should be the goal of every geoscientist. Yet, there...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Share on Social Media