OSDU Leverages Cloud Technologies to Simplify Data Access

| |

Participation in industry consortiums such as the Open Subsurface Data Universe (OSDU) greatly enhances collaboration and information sharing across all aspects and disciplines of oil and gas field development and management.

The evolution of technology in oil and gas is producing an increasing number of data sources, massive data volumes, and discipline-specific software programs to analyze those data. Powerful software packages support the needs of geologists, geophysicists, drilling teams, and reservoir and production engineers, providing critical insight into the planning and operations associated with oil and gas fields. However, the value and benefit of these software packages are limited by the inability to easily share the data and insight among the various disciplines.

The vast amounts of subsurface data generated by the oil and gas industry are often underutilized, confined in huge databases, in numerous different formats, and accessible only to those who have the appropriate software that can unlock the value of these data.

Making the Case for the Open Subsurface Data Universe

Operators readily acknowledge that limitations imposed by software solutions and the data formats or types hinder productivity. The industry is keenly aware of the inefficiencies and the problems they create for asset management teams.

  • Data incompatibility among applications results in the majority of data collected by oil and gas companies rarely achieving its full value.
  • The inability to discover and access all available/relevant data for a project, especially when there are teams working the project across time zones, departments, and disciplines, leads to sub-optimum decisions.

As a result, an initiative to overcome these limitations was launched in 2019 by The Open Group. The Open Subsurface Data Universe (OSDU) Forum is a group of more than 100 oil and gas industry stakeholders—operators, services, technology, software, and academia—focusing on the use of cloud technology to transform the current complex data and application environments that characterize the industry into a far more efficient means of accessing and using data.

Working on the principle of separating data from applications, the goal of OSDU is the development of an open data platform and ecosystem, based on new data-driven cloud-native applications. The initiative includes access to the full range of subsurface and well data such as seismic, models, logs, simulation, and production with support for existing applications and data frameworks.

Support From Major Cloud Providers

A common data platform with published APIs will be included in the cloud-native subsurface and well data (structured and unstructured) reference architecture with initial implementations by Microsoft Azure, Amazon Web Services, and Google GCP. OSDU will use industry data standards for integration and data access and define application standards to ensure compatibility with its platform. A standard programming interface ensures access to object stores, databases, and microservices, regardless of the cloud platform.
Once implemented, the OSDU data platform will bring benefits throughout the industry via:
  • Reduced data silos: subsurface and wells data are integrated and accessible via a single data platform
  • Universal data access: anyone from a big software vendor to a university graduate student can access data in the same way
  • Metadata searches: data loading and ingestion steps will provide rich metadata to expedite finding the right data for a project, e.g., search through wells by geographic polygons, available log data, various dates, and other key attributes
  • Workflows: taking advantage of cloud-native solutions, are seamlessly executed across the OSDU data platform
  • Innovation: competition between and cooperation among operators, software vendors, suppliers, and academia accelerate platform enhancements and functionality.
When fully implemented, OSDU will transform the oil and gas industry’s ability to obtain added value from subsurface and well data via new cloud-based capabilities that standardize data access and reduce data lifecycle costs.

Pioneering Work Regarding Subsurface and Well Data Integration and Access

Dynamic Graphics, Inc. long ago recognized the problems created by numerous, incompatible software products and data formats used widely in the oil and gas industry. In response to the need, DGI developed CoViz 4D, a visualization and analytics software that easily integrates a wide range of structured and unstructured oil and gas data. With CoViz 4D there’s no need for specific knowledge of where the data is stored, or how to run the software that generated the data.
CoViz 4D enables members of an asset management team to simultaneously access data from many sources and applications in a flexible viewing environment. CoViz 4D includes significant features that facilitate rapid, integrated, quantitative analysis and statistical comparison of diverse 3D and 4D data sets.
CoViz 4D includes significant features that facilitate rapid, integrated, quantitative analysis and statistical comparison of diverse 3D and 4D data sets.

DGI Actively Contributing to the Design of the OSDU Platform

DGI is an active member of the OSDU Forum. Using the knowledge and experience gained from more than 50 years in the industry, with a special focus on solving the problems of data integration and access, DGI is contributing to the design of the OSDU platform. As the OSDU platform evolves DGI will continue to make enhancements to CoViz 4D to take full advantage of its innovative capabilities.

CoViz 4D, a data visualization analytics software from Dynamic Graphics, Inc., gives professionals the ability to easily integrate and access all relevant data associated with petroleum assets. Powerful visualization capabilities enable asset teams to explore data relationships and analyze how data changes over time to optimize decisions that positively impact profit and reduce operational risk. To learn more about CoViz 4D, contact our team.

FURTHER READING

Mitigating Well Interference via Microseismic Data Visualization

Visualizing microseismic data and frac events in the context of offset wells, well logs, and geologic and reservoir models in CoViz 4D can reveal possible well interference occurrences and enable better decision making.To maximize production from low-permeability...

Geomechanical Analysis: Better Understanding of Deformation Through Data Visualization

Vertical displacement and strain grids calculated using the CoViz 4D Geomechanics workflow. In the vertical displacement grid on the left, positive (orange) displacement in the overburden represents compaction (movement down toward the center of the earth) and the...

Enhancing Structural Interpretation of Seismic Data With Velocity Modeling

This display from CoViz 4D shows the depth scaled velocity model using well control and the sliced structural depth model in the upper part of the image. The seismic time model along with the average velocity cube used to correct well control is shown below.While...

The Analysis of Active Geology of Oil and Gas Fields for Development

Accurate characterization of the geology of oil and gas fields is an essential aspect of successful field development. Identifying and avoiding or mitigating risks as early as possible reduces development costs. With the wealth of geologic and other subsurface data...

Enhancing Reservoir Characterization With 3D Geocellular Modelling

Cellular grids are created so gridlines align to the major structural components of the model such as the faults and horizons.Greater accuracy in reservoir modeling supports better field development and operational decisions. With the wealth of geologic,...

Visualizing Spatio-Temporal Data

Many different 3D and 4D data types in the same view. Well paths, logs, and tops shown in context with 4D seismic and a reservoir simulation model. Production data also shown. Data used with permission of owner.Visualizing spatio-temporal data on evolving entities or...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Share on Social Media