Predictive Analytics in the Oil and Gas Industry Aids in Refining Estimated Ultimate Recovery Analysis

| |

predictive-analytics-in-oil-and-gas-industry
Seismic history matching with simulation models in a temporal setting can greatly enhance predictive performance analysis. CoViz 4D is a vital tool designed to assist analysts in economic and technical decision-making.
Predictive analytics in the oil and gas industry is a vital tool that allows analysts to assess the full composition of recoverable reserves. Without a good understanding of the field, analysts can miss lucrative reserve locations and overlook potential hazards that could hamper operations.
The solution is a production history matching workflow that creates a reservoir model to match past production. In order to create a useful model, analysts need a robust reservoir simulator coupled with flexible visualization and analysis software to enhance and validate the reservoir simulation model construction. By using a variety of data streams that are merged together, analysts can make the right development decisions via enhanced predictive analysis from an economic and technical perspective.

Evolving Analysis of Field Data

Numerous types of structured data (including seismic and well log data) and unstructured data (production and pressure data, rock samples) are collected periodically throughout the life of a field and iteratively included in the geologic, geophysical, petrophysical, and engineering models. These models evolve into more accurate and refined interpretations as new information is added.
During the life of a field, it is common for the data format and collection instrumentation to change and improve giving the operator greater resolution in their technical interpretation of the field’s structure and reservoir. Since field production can last for decades, analysts need software that will merge all data streams over time while retaining a comprehensive rendering that everyone on a team can understand.
Analysts need software that will merge all data streams over time while retaining a comprehensive rendering that everyone on a team can understand.

Precise Field Analysis and Interpretations

The periodic addition of new data drives a continual reevaluation of the asset and updated predictions are made concerning reserves and economics of the field. Greater resolution in the geological and geophysical models often identifies potential bypassed pay within previously unidentified zones and traps. The discovery of potential bypassed pay requires a reinterpretation of the field’s predictive analytics (potential pay, lithologic reservoir parameters, petrophysical reservoir parameters, geologic structure, and thickness) to refine the asset’s Estimated Ultimate Recovery (EUR) prediction and evaluate expenditures for new wells needed to recover the bypassed pay.
These interpretations are usually conducted within a service company’s provided interpretive software that often does not communicate well between discipline-specific analysis. This makes the process of asset reinterpretation difficult, time-consuming, and often incomplete. These difficulties can be overcome by using powerful data fusion software that can incorporate all data types.
The periodic addition of new data drives a continual reevaluation of the asset and updated predictions are made concerning reserves and economics of the field. Greater resolution in the geological and geophysical models often identifies potential bypassed pay within previously unidentified zones and traps. The discovery of potential bypassed pay requires a reinterpretation of the field’s predictive analytics (potential pay, lithologic reservoir parameters, petrophysical reservoir parameters, geologic structure, and thickness) to refine the asset’s Estimated Ultimate Recovery (EUR) prediction and evaluate expenditures for new wells needed to recover the bypassed pay.
These interpretations are usually conducted within a service company’s provided interpretive software that often does not communicate well between discipline-specific analysis. This makes the process of asset reinterpretation difficult, time-consuming, and often incomplete. These difficulties can be overcome by using powerful data fusion software that can incorporate all data types.

CoViz 4D and Predictive Analytics in the Oil and Gas Industry

When it comes to predictive analytics in the oil and gas industry, CoViz 4D can enhance model simulations, simplifying the analytical and reinterpretation process. This access to total data flexibility enables all members of the asset team to easily view all information and make critical cross-disciplinary correlations that can more accurately reflect the field’s EUR.

CoViz 4D, a data visualization analytics software from Dynamic Graphics, Inc., provides data integration strategies that aid in refining a field’s EUR. Contact our team today to learn how CoViz 4D can assist your asset management team.

FURTHER READING

How Leveraging a Digital Oilfield Leads to Improved Operations

A mechanical issue in a well is a common occurrence, but issues found in more than one well could indicate a larger problem within the reservoir. To avoid reservoir dilemmas that can hamper well-placement strategies and incur long-term costs, analysts need a complete...

Seismic History Matching: Analyzing and Validating Reservoir Models with 4D Visualization

4D seismic integrated with other discipline-specific data streams in a streamlined workflow fosters collaborative decision making. CoViz 4D offers quantitative and qualitative tools to enable efficiency and accuracy in results.4D seismic surveys play a vital role in...

Using 3D Terrain Visualization Software for Multicomponent Scene Analysis

3D scene building, based on open-source digital terrain models, buildings, vegetation, powerlines, fences and satellite images can be integrated for visual communication and analysis functions for a multitude of purposes. CoViz 4D is extremely adept at quickly...

4D Comparative Analysis of Seismic Reflection Data

Seismic reflection data have been utilized in the oil and gas industry and other geological studies to identify subsurface characteristics, calling attention to prevalent uncertainty and variations. The data is dependent upon the presence of acoustical contrasts...

Risk Management in the Oil and Gas Industry: Multidisciplinary, Vendor-neutral Visualization for Better Decisions and Reducing Risks while Drilling

Target analysis and wellpath ellipses of uncertainty along a proposed wellbore, viewed in conjunction with structural models, can greatly reduce the risk associated with many drilling hazards.One sure way to minimize risk, regardless of the situation, is to obtain as...

3D Mapping of Enhanced Oil Recovery in Sandstone Reservoirs with Diverse Datasets

Among the many different factors that oil recovery depends on, the lithological structure of the reservoir is one of the primary factors. The lithological characteristics of the sandstone reservoir make it the most sought-after choice for oil recovery projects. In...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Share on Social Media