Residual Analysis of 4D Reservoir Simulation Grids

| |

Reservoir simulation grid shown with the structural model, seismic and lathe plots of well logs.

Reservoir simulation grid shown with the structural model, seismic and lathe plots of well logs. Data used with permission of owner.

Predicting reservoir behavior is crucial for avoiding many challenges in the development of a hydrocarbon asset. A reservoir simulation grid is one approach that geoscientists and reservoir engineers take to analyze reservoir models which provide a better understanding of subsurface conditions. Paired with 4D seismic, reservoir simulation grids can yield a standard way of locating subsurface anomalies and generating a 4D understanding of reservoir behavior to make more informed decisions for efficient asset production. With software that allows for integrated quantitative visualization, users can compare data and models and visually analyze the area of interest to make accurate predictions, reduce uncertainty, and increase cost-effectiveness.

Enhancing Reservoir Simulation Grids Through Integration and Comparison

A reservoir simulation model can be developed to replicate actual reservoir characteristics, thus making it easy to identify fluid flow patterns through history matching, determine uncertainties, and make predictions of reservoir behavior. Gridding in the reservoir simulation allows engineers to make accurate geological and petrophysical predictions through proper representation of rock properties including faults and strata, porosity and permeability, pressure, and saturation.

The reservoir simulation grid stores geological properties at grid point and models on a block-by-block basis enabling detailed interpretation. Integration of 4D seismic enhances this prediction of reservoir behavior by adding an increased level of detail—specifically temporal detail—to the picture. The ability to visualize data at its correct geospatial location at specific points in time enables observation of variations, enhancing 4D understanding of the reservoir.

The ability to run the simulation multiple times facilitates observation of variation by comparing values in successive reservoir simulation grids. With this, geologists, geophysicists, and reservoir engineers can:

  • Evaluate complex reservoir properties through a better understanding of subsurface properties.
  • Cross-correlate and compare the 4D seismic attributes with well logs to analyze the accuracy of the model.
  • Minimize uncertainty caused by ambiguous data with time-step arithmetic capabilities.
reservoir simulation grid

Cross plot of oil saturation and seismic amplitude early in the life of a reservoir. This shows a decent correlation between the negative amplitudes and higher oil saturation values. Data used with permission of owner.

Integrated Visualization for Understanding Reservoir Behavior

The integration of 4D seismic data with a reservoir simulation model allows for a comprehensive understanding of reservoir behavior. The observations based on data visualization and comparison allow users to easily locate variations and anomalous values, essential in identifying the current and future performance of the reservoir. The integration of projected behavior shown by reservoir simulation along with the observed variation of 4D seismic allows asset teams to:

  • Help define flow regions and track fluid migration
  • Identify regions that are depleted and their extent of depletion
  • Determine near wellbore information
  • Simulate production effects over time in the wells
  • Perform history matching to improve the reservoir performance prediction

CoViz 4D: Quantitative Visualization for Successful Analysis

The integrated visualization capabilities of CoViz 4D allow users to understand reservoir performance over time for successful asset planning and development. The ability to filter and scale seismic and simulation data allows asset teams to visually compare and analyze the area of interest. CoViz 4D’s time-step capabilities facilitate the identification of anomalies and variations in the data through the construction of residual anomaly maps. With a 4D understanding of the reservoir and enhanced forecasting, geoscientists and reservoir engineers can easily evaluate their existing operational strategy and make better planning and development decisions.

CoViz 4D, a data visualization analytics software from Dynamic Graphics, Inc., enables oil and gas professionals to easily access and combine all relevant data associated with hydrocarbon assets. Powerful 4D visualization capabilities allow you to explore data relationships through the integration of 4D seismic and reservoir simulation grids to analyze the impact of changing reservoir behavior over time, allowing multi-disciplined asset teams to confidently make operational decisions that positively impact profit and reduce operational risk. To learn more about CoViz 4D contact our team.


Microseismic Monitoring: Measuring the Effectiveness of Reservoir Stimulation

Microseismic events plotted along with the reservoir grid with production and seismic data for context. By combining these data, CoViz 4D can aid in the understanding of reservoir heterogeneity and fracture systems.Microseismic monitoring is helping reservoir...

Developing Reservoir Management Best Practices with 3D Visualization

Best practices in reservoir management may include the simultaneous visualization of fracture simulation, microseismic events, well logs, and geologic structure within a pay zone. CoViz 4D enables a cohesive understanding across the spectrum of practitioners, asset...

The Value of Temporal Data Analysis in Reservoir Management

A fully integrated 4D solution requires all temporal data to be assimilated into a single system with access to both individual files and all data simultaneously, regardless of time steps. Sophisticated handling of the data enables the addition or exclusion of...

Predictive Analytics in the Oil and Gas Industry Aids in Refining Estimated Ultimate Recovery Analysis

Seismic history matching with simulation models in a temporal setting can greatly enhance predictive performance analysis. CoViz 4D is a vital tool designed to assist analysts in economic and technical decision-making.Predictive analytics in the oil and gas industry...

Subsurface Geological Modeling: Subsurface Geology and Well Planning

Geocellular modeling, on the left in the above image, and structural modeling, on the right, are essential at every stage of the reservoir life cycle. Integrating these models with existing infrastructure and proposed well plans with EarthVision promotes better...

Leveraging a Geomechanics Workflow to Enhance Reservoir Analysis

CoViz 4D offers a rapid, easy to use, first-look geomechanical analysis for assessing reservoir thickness changes that could lead to well integrity issues.Geomechanical analysis is critical to understanding reservoir thickness changes that occur due to production and...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Accessibility Tools

Share on Social Media