Phone
+1 510-522-0700
email

4D Seismic Data Visualization: Why the 4th Dimension Is Just As Important As the Other Three

| |

One seismic cube out of a time-lapse series shown with the velocity cube, different geologic models, reservoir simulation grid, production data, and well paths, completions and logs. Putting all this 3D and 4D data into a single environment provides a coherent history of a reservoir leading to better insights than viewed in different groups.

Visualization of subsurface data associated with hydrocarbon assets has evolved from the acquisition of millions of seismic data points (1D) that create two-dimensional (2D) images showing subsurface geology, to three-dimensional (3D) seismic data visualizations. The level of detail continually improves with more precise data acquisition capabilities, ever-greater data volumes, and sophisticated processing algorithms.

Although 3D data acquisition continues to be expensive, especially for offshore fields, many offshore operators understand the critical value of time-lapse data (4D) to monitor field changes and invest in permanent reservoir monitoring (PRM) infrastructure. By instrumenting the field, operators can take full advantage of the value of the large volumes of seismic data collected during the asset’s life to maximize their return on investment.

The Value of 4D Seismic Data Visualization and Analysis

Three-dimensional subsurface data provides critical insight for the individual disciplines of the asset teams as they analyze seismic, geological, and petrophysical data, develop reservoir models, plan production test wells, and monitor fluids and other production data. Three-dimensional data acquires even greater value when it can be fully visualized in a temporal sequence (4D). With the time dimension engineers and geoscientists can understand critical interactions of engineering methods and processes as they interact with the reservoir’s geologic structure and lithologic composition.

Visualizing Time-Variant Seismic Data

Understanding the changing response of a reservoir over time is critical for making development decisions that optimize production. Quantitative visualization of evolving time-variant seismic data gives asset teams the ability to:
  • visualize well trajectories, perforations, treatment curves, and induced fracture locations as new well events and seismic data are added
  • analyze microseismic event geometry over time, including geological, petrophysical, and reservoir data, captured during hydraulic fracturing to present the microseismic data in their true geologic context
  • compare the 4D seismic response with the dynamic model and the well/production data for better history matches and a more accurate understanding of the 4D seismic response
  • understand the evolution of fluid and gas movement and saturations within the reservoir
  • calculate displacement, overburden strain, and seismic time-shifts due to reservoir compaction to prevent formation damage that could degrade the ability to economically extract recoverable hydrocarbons
  • monitor injection water replacing oil to confirm the effective performance of the water injection along the completed intervals
Readers can learn more about the capabilities and benefits of time-series seismic data visualization in the Practical Example of Data Integration in a PRM Environment case study.
Much of the data associated with hydrocarbon assets are temporal, and one of the biggest challenges in obtaining maximum value from these data is the integration of the individual data sets. To facilitate exploration and analysis of the changing reservoir response over time the different data and timestamp formats must be organized into a coherent format for seismic data visualization.

Time-Series Data Integration, Visualization, and Analysis

CoViz 4D answers the challenges of data integration and visualization of time-series seismic data. Individual disciplines of the asset management team simply drag and drop their datasets into the data registry. The registry provides a means for team members to simultaneously access many other data sources without the need to know where the data is stored or how to run the software that generated the data. CoViz 4D automatically manages the integration of large data volumes and understands the varying data and timestamp formats required for 4D visualization.
CoViz4D’s integrated visual framework allows engineers and geoscientists to see and understand critical interactions of engineering methods and processes as they interact with a reservoir’s geologic structure over time. As additional data are acquired, they are easily incorporated into the model to accurately reflect current reservoir characteristics.
Bringing all necessary data into a single integrated visualization platform maximizes the value of 4D seismic data and encourages different disciplines to understand and challenge each team member’s ideas, assumptions, and conclusions. Time-lapse seismic data visualization adds significant value to the understanding of reservoir performance leading to better development decisions.

CoViz 4D, a data visualization analytics software from Dynamic Graphics, Inc., enables oil and gas professionals to easily access and combine all relevant data associated with hydrocarbon assets. Powerful 4D visualization capabilities allow you to explore data relationships and analyze the impact of changing reservoir conditions over time, allowing multi-disciplined asset teams to confidently make operational decisions that positively impact profit and reduce operational risk. To learn more about CoViz 4D, contact our team.

FURTHER READING

Developing Reservoir Management Best Practices with 3D Visualization

Best practices in reservoir management may include the simultaneous visualization of fracture simulation, microseismic events, well logs, and geologic structure within a pay zone. CoViz 4D enables a cohesive understanding across the spectrum of practitioners, asset...

Predictive Analytics in the Oil and Gas Industry Aids in Refining Estimated Ultimate Recovery Analysis

Seismic history matching with simulation models in a temporal setting can greatly enhance predictive performance analysis. CoViz 4D is a vital tool designed to assist analysts in economic and technical decision-making.Predictive analytics in the oil and gas industry...

Well Spacing Optimization for Oil Well Design Completion

Optimal spacing of horizontal wells in producing zones is key in maximizing production. Data used by permission of owner.Well spacing is one of the most critical factors affecting onshore well production. Reservoir teams striving to optimize well spacing can utilize...

Visualizing 3D Seismic Analytics and Attributes

Integrating 3D and 4D seismic with reservoir simulation models, faults, and well data (completions and production) is critical in enhancing reservoir understanding. This is easily accomplished with CoViz 4D from Dynamic Graphics, Inc. Data used by permission of...

Unconventional Reservoir Characterization: Visualizing Complex Shale Lithologies

Gamma ray model showing the higher values (shales) in darker browns and lower values (sands) in yellow.  Data courtesy Rocky Mountain Oil Technology Center and the U.S. Department of Energy.The unconventional shale reservoir has shown tremendous potential in the...

Exploring the Advantages of Measurement While Drilling

In the wake of the shale oil boom in the United States, drillers are encountering unconventional reservoirs that require sophisticated strategy. While 95% of U.S. drilling rigs can perform horizontal drilling that, together with hydraulic fracturing, is essential to...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Share on Social Media