4D Seismic Data Visualization: Why the 4th Dimension Is Just As Important As the Other Three

One seismic cube out of a time-lapse series shown with the velocity cube, different geologic models, reservoir simulation grid, production data, and well paths, completions and logs.

One seismic cube out of a time-lapse series shown with the velocity cube, different geologic models, reservoir simulation grid, production data, and well paths, completions and logs. Putting all this 3D and 4D data into a single environment provides a coherent history of a reservoir leading to better insights than viewed in different groups.

Visualization of subsurface data associated with hydrocarbon assets has evolved from the acquisition of millions of seismic data points (1D) that create two-dimensional (2D) images showing subsurface geology, to three-dimensional (3D) seismic data visualizations. The level of detail continually improves with more precise data acquisition capabilities, ever-greater data volumes, and sophisticated processing algorithms.

Although 3D data acquisition continues to be expensive, especially for offshore fields, many offshore operators understand the critical value of time-lapse data (4D) to monitor field changes and invest in permanent reservoir monitoring (PRM) infrastructure. By instrumenting the field, operators can take full advantage of the value of the large volumes of seismic data collected during the asset’s life to maximize their return on investment.

The Value of 4D Seismic Data Visualization and Analysis

Three-dimensional subsurface data provides critical insight for the individual disciplines of the asset teams as they analyze seismic, geological, and petrophysical data, develop reservoir models, plan production test wells, and monitor fluids and other production data. Three-dimensional data acquires even greater value when it can be fully visualized in a temporal sequence (4D). With the time dimension engineers and geoscientists can understand critical interactions of engineering methods and processes as they interact with the reservoir’s geologic structure and lithologic composition.

Visualizing Time-Variant Seismic Data

Understanding the changing response of a reservoir over time is critical for making development decisions that optimize production. Quantitative visualization of evolving time-variant seismic data gives asset teams the ability to:

  • visualize well trajectories, perforations, treatment curves, and induced fracture locations as new well events and seismic data are added
  • analyze microseismic event geometry over time, including geological, petrophysical, and reservoir data, captured during hydraulic fracturing to present the microseismic data in their true geologic context
  • compare the 4D seismic response with the dynamic model and the well/production data for better history matches and a more accurate understanding of the 4D seismic response
  • understand the evolution of fluid and gas movement and saturations within the reservoir
  • calculate displacement, overburden strain, and seismic time-shifts due to reservoir compaction to prevent formation damage that could degrade the ability to economically extract recoverable hydrocarbons
  • monitor injection water replacing oil to confirm the effective performance of the water injection along the completed intervals
Readers can learn more about the capabilities and benefits of time-series seismic data visualization in the Practical Example of Data Integration in a PRM Environmentopens PDF file case study.
Much of the data associated with hydrocarbon assets are temporal, and one of the biggest challenges in obtaining maximum value from these data is the integration of the individual data sets. To facilitate exploration and analysis of the changing reservoir response over time the different data and timestamp formats must be organized into a coherent format for seismic data visualization.

Time-Series Data Integration, Visualization, and Analysis

CoViz 4D answers the challenges of data integration and visualization of time-series seismic data. Individual disciplines of the asset management team simply drag and drop their datasets into the data registry. The registry provides a means for team members to simultaneously access many other data sources without the need to know where the data is stored or how to run the software that generated the data. CoViz 4D automatically manages the integration of large data volumes and understands the varying data and timestamp formats required for 4D visualization.
CoViz4D’s integrated visual framework allows engineers and geoscientists to see and understand critical interactions of engineering methods and processes as they interact with a reservoir’s geologic structure over time. As additional data are acquired, they are easily incorporated into the model to accurately reflect current reservoir characteristics.
Bringing all necessary data into a single integrated visualization platform maximizes the value of 4D seismic data and encourages different disciplines to understand and challenge each team member’s ideas, assumptions, and conclusions. Time-lapse seismic data visualization adds significant value to the understanding of reservoir performance leading to better development decisions.
Data types available using CoViz 4D software.

CoViz 4D, a data visualization analytics software from Dynamic Graphics, Inc., enables oil and gas professionals to easily access and combine all relevant data associated with hydrocarbon assets. Powerful 4D visualization capabilities allow you to explore data relationships and analyze the impact of changing reservoir conditions over time, allowing multi-disciplined asset teams to confidently make operational decisions that positively impact profit and reduce operational risk. To learn more about CoViz 4D, contact our team.


3 Oil and Gas Technology Trends That Are Improving the Industry

Integrating multiple data sources such as 4D seismic, reservoir simulation, directional wellbores, stratigraphic top picks and monthly production data from 'best-of-breed' software supports collaborative analysis for improved decision-making.In our close collaboration...

Seismic Exploration: Understanding the Importance of Data Integration

Integrating seismic data with reservoir simulation results fosters a collaborative environment allowing asset teams to make better, more informed decisions in a shorter amount of time.Efficient seismic exploration requires comprehensive data integration. When...

Accommodating Non-Spatial Data Analysis in Decision-Making Workflows

Non-spatial data analysis is just as important as analyzing spatial data during hydrocarbon asset development planning. The combination of non-spatial data and varying streams of spatial data leads to better, faster, and more confident decisions.That’s why data...

Seismic History Matching: Analyzing and Validating Reservoir Models with 4D Visualization

4D seismic integrated with other discipline-specific data streams in a streamlined workflow fosters collaborative decision making. CoViz 4D offers quantitative and qualitative tools to enable efficiency and accuracy in results.4D seismic surveys play a vital role in...

Scaling 3D Seismic Data Analysis from Laptops to Visualization Centers

Multiple coordinated views of the same reservoir. Different reservoir attributes shown as well as 4D seismic and a 3D structural model showing the individual sand bodies. Data used with permission of owner.One of the essential aspects of visualization is the ability...

Visualizing Enhanced Oil Recovery in Carbonate Reservoirs

Carbonate reservoirs contain a majority of the world's petroleum reserves, and they are one of the more challenging geologic formations to characterize. Within these reservoirs, porosity and permeability can be highly complex and vary widely with little spatial...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Quick, Accurate Relief Well Planning Using 3D Visualization Software

The crucial initial phase in the drilling of a relief well is the development of an extensive relief well plan. The planning requires geoscientists, drilling engineers, and well planners to have detailed information on the subsurface geology and its attributes as well...

Accessibility Tools

Share on Social Media