Schematic illustrating how the CoViz Sim2Seis workflow, tightly coupled with qualitative and quantitative analysis in the CoViz 4D Viewer, offers seismic history-matching capabilities.
Seismic forward modeling is an important step to better understand complex subsurface conditions when using 3D, and especially 4D, seismic data. However, to fully appreciate the impact of the modeling results, opens in a new windowdata integration is required to set the findings in their full and correct context. Analysts are well aware of the challenges of sifting through multiple applications to manage datasets—which often leads to confusion and wasted time along the way. When it comes to workflows, an analytical scheme that generates impeccable quantitative results is essential, but quickly casting these results into their 4D context which considerably enhances the decision-making process should also be regarded as a must.
What analysts need is a single integrated platform that can ensure all users and stakeholders have the ability to generate and interrogate the required products, with a minimal amount of training, and the lowest possible barriers-to-entry. Provisioning such an environment not only increases user confidence in the final product but it also ensures that the product is delivered on time for
opens in a new windowcritical management decisions that will likely have an impact on the operations and return on investment of the whole field.
The Challenge: Compatibility
Data integration and cross-product compatibility can be one of the most common challenges of seismic forward modeling. Companies with 4D seismic data may have existing workflows sufficient for seismic forward modeling, but this solution may be ad-hoc and multi-vendor. Consequently, a novice user may be challenged with understanding and navigating these dissimilar programs, whilst ensuring the data transferred from one package is
opens in a new windowcompatible and geodetically consistent with a different package. Furthermore, some of the steps in creating a synthetic seismic volume may be in-house scripts, thus requiring increasing amounts of maintenance and quality assurance to ensure compatibility with the sources of the initial data and the static or dynamic cell property models.
When additional time is spent overcoming this friction to integrate data, time for proper analysis may be sacrificed. This could lead to vital insights being lost or missed, leading to suboptimal decisions and lost value.
Having an integrated approach that carries out the required functional processes in a single application removes the need for the maintenance of bespoke scripts, and also removes the friction of moving data between applications. This approach is evidenced by
opens in a new windowCoViz 4D’s Sim2Seis workflow in which input data, processes, and products are integrated within a single platform for seamless operations.
The benefits of seismic forward modeling are manifold but are primarily directed toward operators who embark (or are considering embarking) on costly
opens in a new window4D seismic monitoring. Most use cases speak to Assisted History Matching (AHM) and other reservoir model improvement efforts. However, the ability to vary the rock and fluid reservoir parameters—within reasonable limits—also allows users to see if the change in the reservoir will be visible in successive future seismic surveys via the generated synthetic seismic volume—so-called feasibility modeling. If the depletion of hydrocarbons and other reservoir changes are not visible in the synthetic seismic volumes, then it is likely the acquired seismic volume will likewise not reveal the all-important reservoir changes. Thus, the operator can be spared the expense of collecting 4D seismic data that would reveal little of value.
The more common AHM modality uses the CoViz Sim2Pem and Pem2Seis modules in sequence to generate synthetic seismic volumes from the modeled reservoir. When compared to observed seismic data, departures can lead to important changes in the dynamic model to improve the match. Ultimately, the reservoir is better understood, and hence better exploited, when seismic assisted history is matched in this fashion. Unification and consideration of varied input data (seismic, well, production, subsidence etc.) is critical in constraining these forward modeling matches.
Simplified Seismic Forward Modeling with CoViz 4D
In summary, the creation of seismic forward modeling can be hampered by mismatches in form and format between different software packages and formatting issues. Workflow complications can result in lost datasets, causing errors, delays, and incomplete solutions that could lead analysts astray during the decision-making process. With CoViz 4D, practitioners can almost entirely eliminate the need for multi-vendor solutions. Instead, users can integrate disparate datasets regardless of origin.
By using CoViz 4D, data transfers are a frictionless process, all the while ensuring that spatial data are geodetically consistent, and interpretations are current, throughout the process. The Sim2Seis workflow creates synthetic seismic data from simulation models, allowing users to better estimate the seismic properties and
opens in a new windowpredict seismic responses. CoViz 4D’s Sim2Seis provides greater clarity into rock and fluid properties, giving managers and operators a necessary insight leading to smarter operational decisions and additional hydrocarbon extractions.