Minimizing the Uncertainty of Well Trajectory Calculations

Positional uncertainty calculated along the wellpath.

Positional uncertainty can be calculated anywhere along the wellpath, from tie-on to total depth.

A well-understood fact: Absolute location accuracy is nearly impossible because of the inherent positional uncertainty (commonly referred to as “errors”) in measurements associated with sensors, depth measurements, axial or cross-axial interference, and geomagnetic field uncertainty, for example. In extended reach wells using conventional MWD techniques, applying poor or inappropriate tool error models can add positional uncertainty of tens of feet larger than a high quality tool with advanced applications. Correct tool applications, such as short collar corrections, in-field referencing, wellpath orientation, multi-station analysis, and survey intervals help minimize the uncertainty the most.

Whether the goal is reaching the target for an extended-reach well or safely navigating the maze of existing wells in a crowe field, reservoir teams can benefit from optimized well designs that appropriately assess factors that contribute to the wellpath’s positional uncertainty.

Well Trajectory Calculations: Visualize the Uncertainty

Two tightly-integrated software products are helping well planners, drilling engineers, and reservoir teams to more accurately assess the uncertainty of well trajectories. Powerful data integration and visualization capabilities (CoViz 4D) and the positional uncertainty models and appropriate survey programs available in the WellArchitect, Dynamic Graphics’ directional drilling / survey management software and well planning software, can be used to interactively design and evaluate wellpaths in relation to any geologic models and offset wellpaths displayed in a 3D visualization environment, while considering the positional uncertainty that will be encountered during drilling.

CoViz 4D and WellArchitect

With WellArchitect, engineers and geologists can calculate positional uncertainty values along the entire planned wellpath while accounting for different surveying tools and programs. Seeing these uncertainty models presented in a 3D subsurface environment, via the integration of CoViz 4D, makes it easier for multidiscipline team members to work collaboratively to answer questions such as:

  • Can the target location be reasonably achieved?
  • Does the proposed wellpath risk collision with existing or planned wellpaths?
  • Is the wellpath being planned too close to a lease line?
  • How accurate is the geological model?

Calculating Positional Uncertainty

To begin the process, engineers calculate the path’s positional uncertainty associated with survey tools in combination with the vertical and horizontal uncertainty of the surface hole location. When assessing the uncertainty of a planned wellpath, the designers can utilize two modes: one as if the wellpath has been drilled (for when the plan is used as an offset), and one for while the plan is being drilled (for when the plan is used as a reference). As a reference, the eas-drilled (or “while drilling”) surveys are used, whereas positional uncertainty as an offset utilizes post-drilling data, survey corrections, or even resurvey run. Three factors determine the accuracy of the positional uncertainty calculation: confidence level, declination data, and survey model.

Confidence level (number of standard deviations)

A default of two standard deviations provides a 74% confidence level (in three dimensions) regarding the location of the wellpath in the three-dimensional subsurface space. This means that the positional uncertainty calculated will be smaller value, but will also only likely cover 74% of the volume. Setting to three standard deviations (97% confidence) provides a more conservative estimate of uncertainty, and is appropriate when evaluating collision avoidance, although some operators may feel comfortable with a higher or lower confidence level. Note that when performing clearance calculations, the confidence level is set by the anti-collision rule itself to ensure that the positional uncertainty of all paths are dealt with appropriately.

Geomagnetic Model

Positional uncertainty is affected by the magnetic declination at the date and location of when and where the survey was taken.

WellArchitect accommodates numerous sources for the declination calculations including HDGM (NOAA’s High Definition Geomagnetic Model), BGGM (British Geological Society’s Global Geomagnetic Model), MVHD (MagVar’s High Definition model), as well as the IGRF model, provided by the US National Oceanic and Atmospheric Association (NOAA), and user-entered values. (Note: Some models require separate licenses from the appropriate vendor.)

Positional uncertainty model used to survey the wellpath

The positional uncertainty model chosen depends on the type of tool and surveying method to be used, as well as the expected post-survey corrections. WellArchitect can be used to calculate uncertainty based on a wide variety of vendor’s tools, as well as all of the Operator Well Survey Group’s and ISCWSA’s tool types and models.

Positional uncertainty is accumulated along the path, and can be queried anywhere along the wellpath, including at total depth (TD). WellArchitect can display the ellipsoids in 3D, as well as showing the dimensions of the ellipsoid of uncertainty using:

  • length of the major semi-axis
  • length of the minor semi-axis
  • vertical semi-axis
  • angular direction (relative to True or Grid North) of the minor semi-axis

Based on the number of standard deviations, the declination, and the tool type and model selected, WellArchitect calculates the ellipsoid of uncertainty (EOU) at each survey station (or intended surveying station) along the wellbore trajectory. When displayed in 3D, these ellipsoids form a twisted elliptical cylinder that is easily depicted.

A planned wellpath with ellipsoids of uncertainty, geologic targets, and surrounding wellpaths.

A planned wellpath with ellipsoids of uncertainty, geologic (blue) targets, and surrounding actual wellpaths.

Trajectory Location Is an Estimate, but Additional Data Improves Geologic Understanding

Regardless of the tools and surveying methods used, calculated positional locations should be considered an estimate. Despite the uncertainty in calculated locations, the information acquired during drilling can aid in the understanding of subsurface models by viewing drilling data—from WellArchitect—alongside the subsurface data in CoViz 4D, in a collaborative environment. For example, often multiple wells target a specific geologic marker at a certain depth; but one well may appear to come in much deeper than a second well. With only one measurement, the marker could be anywhere within an individual well’s ellipsoid of uncertainty. With two measurements, the uncertainty is “reduced”: knowing that the marker is somewhere within the overlapping ellipsoids gives drilling engineers a more accurate estimate of the depth to target—all easily evaluated in CoViz 4D.

Integrated Data, Uncertainty Calculations, and Visualization for Reduced Risk

Technical advancements in surveying and drilling technologies are providing volumes of data to help well planners and drilling engineers better understand and navigate the complexity of subsurface environments. When these data are integrated and presented in a 3D environment, depicting relevant geological formations, as well as existing and future wells, reservoir teams can then apply positional uncertainty models and collaboratively evaluate conditions to plan and execute drilling strategies that minimize drilling risk.

CoViz 4D, a data visualization and analytics software from Dynamic Graphics, Inc., gives reservoir teams the ability to plan and drill wells with greater confidence. Powerful visualization capabilities and positional uncertainty calculations provide a more accurate understanding of wellbore placement in context of geologic formations. WellArchitect, also from Dynamic Graphics, Inc., offers a wide range of powerful visualization, analysis, and planning tools, promotes a more accurate understanding of hydrocarbon assets and facilitates better well planning. To learn more about CoViz 4D contact our team.


Maximize Reservoir Recovery by Integrating Diverse Datasets

Data integration is key in maximizing production while keeping costs to a minimum. CoViz 4D enhances production by integrating all available oilfield data into a single application.Over the past few decades, global energy consumption has increased dramatically. This...

Planning HPHT Well Completions

Completions in HPHT environments are challenging and costly. 3D visualization and analysis of reservoir conditions and characteristics, along with offset well data, can significantly increase safety and success rates. Data used with permission by the...

Leveraging a Geomechanics Workflow to Enhance Reservoir Analysis

CoViz 4D offers a rapid, easy to use, first-look geomechanical analysis for assessing reservoir thickness changes that could lead to well integrity issues.Geomechanical analysis is critical to understanding reservoir thickness changes that occur due to production and...

Seismic Reservoir Monitoring Through Visualization

A 3D view of a reservoir with seismic integrated with geologic models, well logs, and a planned wellpath. Data courtesy Rocky Mountain Oilfield Testing Center and U.S. Department of Energy.An ideal design, development, and management plan for hydrocarbon asset...

Geomechanical Analysis: Better Understanding of Deformation Through Data Visualization

Vertical displacement and strain grids calculated using the CoViz 4D Geomechanics workflow. In the vertical displacement grid on the left, positive (orange) displacement in the overburden represents compaction (movement down toward the center of the earth) and the...

3 Oil and Gas Technology Trends That Are Improving the Industry

Integrating multiple data sources such as 4D seismic, reservoir simulation, directional wellbores, stratigraphic top picks and monthly production data from 'best-of-breed' software supports collaborative analysis for improved decision-making.In our close collaboration...

Seismic Reservoir Monitoring Through Visualization

An ideal design, development, and management plan for hydrocarbon asset development comes from having a better understanding of  all known geological and petrophysical aspects of the subsurface. But given the dynamic nature of the reservoir and its attributes, petroleum professionals can encounter some complexities in the process of in-depth analysis.

Quick, Accurate Relief Well Planning Using 3D Visualization Software

The crucial initial phase in the drilling of a relief well is the development of an extensive relief well plan. The planning requires geoscientists, drilling engineers, and well planners to have detailed information on the subsurface geology and its attributes as well...

Accessibility Tools
XHot Key: CTRL-Q

Share on Social Media