The calculation of displacement, strain and seismic time-shifts in the overburden due to thickness change in the reservoir.

4D Geomechanical Reservoir Model Analysis Software

CoViz® 4D offers a 4D Geomechanics workflow, which calculates displacement, strain, stress, and seismic time-shifts in the overburden due to thickness change in the reservoir resulting from production and injection.

The 4D Geomechanics workflow utilizes analytical solutions to displacement based on reservoir compaction and enables rapid, first-order screening of overburden deformation and time-shifts. Hence, for example, the workflow can offer quick-look feasibility modeling to see the potential effects of reservoir subsidence in the 4D seismic signature.

This agile workflow enables teams to assess 4D geomechanical effects and determine if further, more detailed study is required; the workflow also provides value in cases where finite element modeling could be prohibitively expensive and time-consuming. Furthermore because of the ease of the workflow, a Geomechanics specialist is not required, and due to the fast calculation time, new well information can be easily included, as necessary.

Overview of CoViz 4D Geomechanics Workflow.

Overview of 4D Geomechanics Workflow. Input properties include: POROSITY, NET-TO-GROSS, PRESSURE, or PORE VOLUME MULTIPLIER. Compute: THICKNESS CHANGE.

Geomechanics Workflow Features:
  • Computes vertical and horizontal components of stress and strain
  • Uses a spatially varying R-factor approach for time-shift calculations
  • Integration of path length and velocity changes into 4D seismic workflows
  • Calculations are quickly parameterized based on an input reservoir simulation grid
  • Utilizes CPU and GPU resources for fast analytical computations, even for very large reservoirs
  • Allows for rapid sensitivity analysis and scenario ⁄ feasibility testing
CoViz 4D enables teams to assess 4D geomechanical effects and determine if further, more detailed study is required.

LATEST NEWS

CoViz 4D 16.0

offers numerous new features including the Minimodeler synthetic model creation improvements; extended support for 2D multigrid file objects; vastly improved RESQML support; numerous new features in the depth calibration workflow; Petrel 2023 Ocean Plugin support; and improved OSDU interoperability, amongst many other changes.

ARTICLES & PAPERS

A Case Study of Generating Synthetic Seismic from Simulation to Validate Reservoir Models

Dhananjay Kumar, Jing Zhang, Robert Chrisman, Nayyer Islam, and Matt Le Good, bp, use the Sim2Seis workflow to help understand the uncertainty of key variables in an ensemble of simulation models from a field in the Gulf of Mexico.

______________________

Practical Example of Data Integration in a PRM Environment, BC-10, Brazil

Hesham Ebaid, Kanglin Wang, Marcelo Seixas, Gautam Kumar, Graham Brew and Tracy Mashiotta examine enhanced workflows and solutions for optimizing the utility of Permanent Reservoir Monitoring data in a deepwater setting.

______________________

Working With the 4th Dimension

Graham Brew, Dynamic Graphics, Inc., USA, and Jane Wheelwright, Dynamic Graphics, Ltd, UK, discuss the integration of 4D seismic data into the reservoir management workflow.

______________________

Visualizing the Reservoir

A solution that offers a dynamic, temporal visualization environment for data fusion and integrated reservoir surveillance.

______________________

Visualizing Everything at Once

Dynamic Graphics has developed a tool which can visualize multiple datasets from an oil field simultaneously in 3D and 4D—from an overall view of the basin to a view of the individual wells and reservoirs—and you can see how it changed over time as well.

PRODUCT SHEETS

Accessibility Tools
hide
XHot Key: CTRL-Q

Share on Social Media