The CoViz 4D software from Dynamic Graphics is ideally suited for the CO2 monitoring challenge. Numerous diverse data streams and subsurface models can capture the past, present, and future fluid distributions in Carbon Capture & Storage (CCS) situations. This data integration, combined with robust quantitative and reporting tools allows the CoViz 4D platform to be an end-to-end solution for monitoring, communicating, and reporting on subsurface CCS activities.
The temporal tools in CoViz 4D reveal the evolution of the injected plume behavior with time as expressed in the seismic reflection data. In Figure 2, note the upward migration in the early history around the sole injector well, followed by a rapid lateral spread at later time points. Noteworthy is the lack of any significant 4D seismic signature above the top of the targeted Utsira container; this gives us some confidence in the integrity of the shale caprock. Tools exist within CoViz 4D to estimate cap rock integrity and fault zone transmissibility – algorithms which can be applied to the available geologic and rock physics model.
Figure 2. Animation showing initial upward migration of CO2 and rapid lateral spread at later time points.
The clear dynamic presentations from the CoViz 4D software makes it an ideal tool for communicating to non-subject matter expert stakeholders who are often deeply invested in these projects. Furthermore, the 4D capabilities of the software make it perfect for displaying any associated induced seismicity, or other dynamic data. And the DGI software can take the analysis much further than just qualitative presentations. Quantitative analysis of the seismic data and reservoir starts with volumetric assessment and storage potential.
Figure 3. Animation showing 2D time series plot alongside the 4D display showing how the gas injection history tracks the volume of the plume detected by the seismic.
Figure 4. Gravity analysis conducted in a Jupyter Notebook which enables the DGI Developers’ Toolkit to be combined with the best of the Python ecosystem.
But beyond these qualitative outcomes the software offers a quantitative platform for integrating injected volumes, seismic signatures, gravity response and so forth. Thus creating an integrated multiphysics earth model for injection verification and compliance monitoring which could be further connected to the appropriate reporting and legislative frameworks.
See the CoViz 4D Reservoir Monitoring page for more information.
Data Sources/Credits:
Sleipner CO2 reference dataset, published via the CO2 DataShare online portal administrated by SINTEF AS ( opens in a new windowhttps://co2datashare.org).