InSAR Data Analysis of the Belridge Field

Introduction to InSAR Data

Interferometric Synthetic Aperture Radar (InSAR) is a powerful remote sensing technique that produces a very detailed picture of the shape of the ground surface. The data returned are so precise that they can reveal changes in the elevation of the earth down to the level of millimeters per day, enabling very small changes in surface elevations to be quickly discovered, which can be critical to land management. Additionally, the method offers speed and ease of data acquisition: The data are typically collected by orbiting satellites and are immune to cloud cover and other access issues. As they are space borne, they have an inherent repeatability, often on the timescale of weeks between duplicate data collection over the same location. In summary, InSAR data are a powerful and ubiquitous tool for detecting ground elevation changes.

Use Case: InSAR Analysis of the Belridge Field

The potential for high density / high accuracy surface deformation (uplift and/or subsidence) information from oil field operations has significant financial, operational, and, critically, safety implications. This is especially acute in the San Joaquin Valley of California where heavy oil production, and water and steam injection, are often from very shallow reservoirs (<1000 feet below surface). Production from these shallow reservoirs is rapidly and strongly reflected in surface conditions, and if not correctly mitigated can lead to infrastructure challenges up to, and including, well failure. InSAR data are the ideal tool for monitoring these entire fields. However, the true value of InSAR data is revealed when the data are fully integrated in a diverse, contextual 4D environment. This must necessarily include temporal records of production and injection data, and can include surface infrastructure, subsurface geologic models, well trajectories and, potentially, microseismic and tilt meter data. The temporal component is paramount in this integration.

Belridge field in the central San Joaquin Valley, California.

Figure 1. Location of study area: Belridge field in the central San Joaquin Valley, California.

Using the CoViz 4D software from Dynamic Graphics for this temporal data integration, we present a case history spanning nearly twenty years for the Belridge field in the central San Joaquin Valley, California (see Figure 1). Multiple years of InSAR data (© 2016 SkyGeo) were combined with digital elevation data and publicly available well locations and production and injection records.

We observed long-term subsidence patterns that are clearly related to fluid production, plus pockets of local uplift interpreted as relating to over-injection. Furthermore, assessing forward modeling with simple geomechanical models showed these can be used to quantify and predict injection performance. Thus, careful integration of InSAR data can yield benefits for operators, including:

  • Planning injection interventions
  • Fewer well integrity issues
  • Savings on drilling costs
  • Better targeting and monitoring of injection campaigns

The movie (Figure 2) offers an integrated, albeit qualitative, view of the well and InSAR data. The correlation between drilling activity and long-term subsidence of the field is easily observed.

Figure 2. Animation of the well and InSAR data showing correlation between drilling activity and field subsidence.

To quantify this relationship, we subjected the InSAR data to a rigorous spatiotemporal workflow which subdivided the field into ~6-acre segments and studied the net production / injection history versus the uplift / subsidence history in each segment, as illustrated in Figure 3.

Figure 3. Workflow for comparing net production / injection history with the uplift / subsidence history in roughly 6-acre segments of the study area.

This workflow was facilitated by the flexible and scalable tools available in the CoViz 4D Developers’ toolkit. These allow for a wide variety of data science-type workflows to be quickly and easily constructed for spatial and temporal data. In this case we captured and archived the workflow in a Jupyter Notebook environment. The conclusion from this analysis is captured in the movie in Figure 4 which shows the clear correlation between well production / injection activity and subsidence.

Figure 4. Animation showing the correlation between well production / injection activity and field subsidence.

To further study the nature of subsurface response to the oilfield operations we built a first-order geomechanical model. Using simple homogeneous relationships and approximate assumptions regarding subsidence modeling, we observe that the InSAR-derived subsidence can be modeled using reservoir compaction linearly scaled by production. Figure 5 captures the essence of this correlation, showing that a first-order reservoir thickness change related to fluid production can explain the observed subsidence.

Figure 5. A first-order geomechanical model demonstrated that fluid production related reservoir thickness changes accounted for the observed field subsidence.

As illustrated in Figure 5, overwhelmingly the InSAR signal indicates a broad subsidence related to production from the reservoir which is not mass-balanced with an equivalent volume of injection. This broad long-term subsidence is expected from these reservoirs, and with prior planning and attention the most severe impacts can be mitigated. However, imposed on top of this broad subsidence are very short wavelength areas of uplift, as illustrated in Figure 6. These much smaller, but much more rapidly developing features are typically related to an over-injection of water or steam, and possibly indicate compromised subsurface communication. The size and speed of the uplift was a significant concern to operators: If the uplift is not identified and arrested quickly it can soon lead to a “surface expression” in which fluids can migrate from the subsurface to the subsurface along newly created fractures. Again, InSAR proved invaluable in rapidly identifying these issues and allowing operators to take immediate corrective action.

Figure 6. Localized areas of rapid surface uplift related to an over-injection of water or steam were observed and mitigated.

In summary we have seen how InSAR data are extremely valuable to onshore operators for revealing both long-term subsidence and short-term uplift events. When integrated in a quantitative platform like CoViz 4D from Dynamics Graphics, the full value of these data can be harnessed and utilized. These workflows can help lower risk and reduce lost-time events in shallow onshore oil provinces such as the San Joaquin Valley of California.

See the CoViz 4D page for more information.

FURTHER READING

Common Risk Segment Mapping for Cuttings Reinjection

Drilling scenarios such as infill drilling, water flood optimization, cuttings reinjection and CO2 injection often require an in-depth study of a field to determine the optimal drilling location within a set of restrictions. Quantifying the decision making around the process requires the integration of dozens of diverse datasets, often containing dynamic information and spanning a range of realizations.

Fracture Propagation Analysis from Inter-well Tracer and Microseismic Data

Following an inter-well tracer study for their field, an onshore group was given the results of the study in the format of spreadsheets and 2D charts. The spreadsheet data were particularly difficult to interpret and the group felt a 3D/4D visualization of the tracer results was critical to fully understand them. Furthermore, the group wanted to integrate the tracer data with other field data that could potentially help with the tracer interpretation, including offset well trajectories, well logs, property models, microseismic data and horizon surfaces.

Infill Drilling Placement using Conditional Seismic Attribute Filtering

Infill drilling aims to tap previously undrained reserves in a mature hydrocarbon field. By definition, infilling happens later in field life and hence involves the analysis of greater volumes and a greater diversity of a priori data. Furthermore, the economics of infill drilling can be marginal. Therefore, a rigorous quantitative decision-making process is necessary to justify the economic risk required to implement drilling and production plans.

InSAR Data Analysis of the Belridge Field

Interferometric Synthetic Aperture Radar (InSAR) is a powerful remote sensing technique that produces a very detailed picture of the shape of the ground surface. The data returned are so precise that they can reveal changes in the elevation of the earth down to the level of millimeters per day, enabling very small changes in surface elevations to be quickly discovered, which can be critical to land management.

Reservoir Pressure Anomalies: Investigating Causes with CoViz 4D

In a California onshore field, with hundreds of closely-spaced production and injection wells, a horizontal production well was experiencing occasional dangerously high pressure and temperature spikes – leading to a serious health and safety issue.

Well Location Optimization with Visual and Quantitative Analysis

An onshore team was tasked with producing a list of potential well landing locations based on attributes in a geological model. Four pad locations in the field were each given a set of 12 wells arranged in a radial pattern; the model’s potential target area covered a Z range of about 1650 ft. The well landing locations needed to be optimized to hit the model’s high Net to Gross (NTG) and Gamma Ray (GRD) areas because these two attributes had high confidence amongst the team. Finally, the potential well path landing options had to be easily visually ranked.

FOLLOW US

Accessibility Tools
hide